时空表示学习对于视频自我监督的表示至关重要。最近的方法主要使用对比学习和借口任务。然而,这些方法通过在潜在空间中的特征相似性判断所学习表示的中间状态的同时通过潜伏空间中的特征相似性来学习表示,这限制了整体性能。在这项工作中,考虑到采样实例的相似性作为中级状态,我们提出了一种新的借口任务 - 时空 - 时间重叠速率(Stor)预测。它源于观察到,人类能够区分空间和时间在视频中的重叠率。此任务鼓励模型区分两个生成的样本的存储来学习表示。此外,我们采用了联合优化,将借口任务与对比学习相结合,以进一步增强时空表示学习。我们还研究了所提出的计划中每个组分的相互影响。广泛的实验表明,我们的拟议Stor任务可以赞成对比学习和借口任务。联合优化方案可以显着提高视频理解中的时空表示。代码可在https://github.com/katou2/cstp上获得。
translated by 谷歌翻译
运动,作为视频中最明显的现象,涉及随时间的变化,对视频表示学习的发展是独一无二的。在本文中,我们提出了问题:特别是对自我监督视频表示学习的运动有多重要。为此,我们撰写了一个二重奏,用于利用对比学习政权的数据增强和特征学习的动作。具体而言,我们介绍了一种以前的对比学习(MCL)方法,其将这种二重奏视为基础。一方面,MCL大写视频中的每个帧的光流量,以在时间上和空间地样本地样本(即,横跨时间的相关帧斑块的序列)作为数据增强。另一方面,MCL进一步将卷积层的梯度图对准来自空间,时间和时空视角的光流程图,以便在特征学习中地进行地面运动信息。在R(2 + 1)D骨架上进行的广泛实验证明了我们MCL的有效性。在UCF101上,在MCL学习的表示上培训的线性分类器实现了81.91%的前1个精度,表现优于6.78%的训练预测。在动力学-400上,MCL在线方案下实现66.62%的前1个精度。代码可在https://github.com/yihengzhang-cv/mcl-motion-focused-contrastive-learning。
translated by 谷歌翻译
我们介绍了一种对比视频表示方法,它使用课程学习在对比度培训中施加动态抽样策略。更具体地说,Concur以易于正面样本(在时间上和语义上相似的剪辑上)开始对比度训练,并且随着训练的进行,它会有效地提高时间跨度,从而有效地采样了硬质阳性(时间为时间和语义上不同)。为了学习更好的上下文感知表示形式,我们还提出了一个辅助任务,以预测积极剪辑之间的时间距离。我们对两个流行的动作识别数据集进行了广泛的实验,即UCF101和HMDB51,我们提出的方法在两项视频动作识别和视频检索的基准任务上实现了最新的性能。我们通过使用R(2+1)D和C3D编码器以及对Kinetics-400和Kinetics-200200数据集的R(2+1)D和C3D编码器以及预训练的影响来探讨编码器骨架和预训练策略的影响。此外,一项详细的消融研究显示了我们提出的方法的每个组成部分的有效性。
translated by 谷歌翻译
现代自我监督的学习算法通常强制执行跨视图实例的表示的持久性。虽然非常有效地学习整体图像和视频表示,但这种方法成为在视频中学习时空时间细粒度的特征的子最优,其中场景和情况通过空间和时间演变。在本文中,我们介绍了上下文化的时空对比学习(Const-CL)框架,以利用自我监督有效学习时空时间细粒度的表示。我们首先设计一种基于区域的自我监督的借口任务,该任务要求模型从一个视图中学习将实例表示转换为上下文特征的另一个视图。此外,我们介绍了一个简单的网络设计,有效地调和了整体和本地表示的同时学习过程。我们评估我们对各种下游任务和CONST-CL的学习表现,实现了四个数据集的最先进结果。对于时空行动本地化,Const-CL可以使用AVA-Kinetics验证集的检测到框实现39.4%的地图和30.5%地图。对于对象跟踪,Const-CL在OTB2015上实现了78.1%的精度和55.2%的成功分数。此外,Const-CL分别在视频动作识别数据集,UCF101和HMDB51上实现了94.8%和71.9%的前1个微调精度。我们计划向公众发布我们的代码和模型。
translated by 谷歌翻译
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the same short video are pulled together in the embedding space, while clips from different videos are pushed away. We study what makes for good data augmentations for video self-supervised learning and find that both spatial and temporal information are crucial. We carefully design data augmentations involving spatial and temporal cues. Concretely, we propose a temporally consistent spatial augmentation method to impose strong spatial augmentations on each frame of the video while maintaining the temporal consistency across frames. We also propose a sampling-based temporal augmentation method to avoid overly enforcing invariance on clips that are distant in time. On Kinetics-600, a linear classifier trained on the representations learned by CVRL achieves 70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50) backbone, outperforming ImageNet supervised pre-training by 15.7% and SimCLR unsupervised pre-training by 18.8% using the same inflated R3D-50. The performance of CVRL can be further improved to 72.9% with a larger R3D-152 (2× filters) backbone, significantly closing the gap between unsupervised and supervised video representation learning. Our code and models will be available at https://github.com/tensorflow/models/tree/master/official/.
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
视频自我监督的学习是一项挑战的任务,这需要模型的显着表达力量来利用丰富的空间时间知识,并从大量未标记的视频产生有效的监督信号。但是,现有方法未能提高未标记视频的时间多样性,并以明确的方式忽略精心建模的多尺度时间依赖性。为了克服这些限制,我们利用视频中的多尺度时间依赖性,并提出了一个名为时间对比图学习(TCGL)的新型视频自我监督学习框架,该框架共同模拟了片段间和片段间的时间依赖性用混合图对比学习策略学习的时间表示学习。具体地,首先引入空间 - 时间知识发现(STKD)模块以基于离散余弦变换的频域分析从视频中提取运动增强的空间时间表。为了显式模拟未标记视频的多尺度时间依赖性,我们的TCGL将关于帧和片段命令的先前知识集成到图形结构中,即片段/间隙间时间对比图(TCG)。然后,特定的对比学习模块旨在最大化不同图形视图中节点之间的协议。为了为未标记的视频生成监控信号,我们介绍了一种自适应片段订购预测(ASOP)模块,它利用视频片段之间的关系知识来学习全局上下文表示并自适应地重新校准通道明智的功能。实验结果表明我们的TCGL在大规模行动识别和视频检索基准上的最先进方法中的优势。
translated by 谷歌翻译
鉴于在图像领域的对比学习的成功,目前的自我监督视频表示学习方法通​​常采用对比损失来促进视频表示学习。然而,当空闲地拉动视频的两个增强视图更接近时,该模型倾向于将常见的静态背景作为快捷方式学习但不能捕获运动信息,作为背景偏置的现象。这种偏差使模型遭受弱泛化能力,导致在等下游任务中的性能较差,例如动作识别。为了减轻这种偏见,我们提出\ textbf {f} Oreground-b \ textbf {a} ckground \ textbf {me} rging(sm} rging(fame)故意将所选视频的移动前景区域故意构成到其他人的静态背景上。具体而言,没有任何非货架探测器,我们通过帧差和颜色统计从背景区域中提取移动前景,并在视频中擦拭背景区域。通过利用原始剪辑和熔融夹之间的语义一致性,该模型更多地关注运动模式,并从背景快捷方式中脱位。广泛的实验表明,FAME可以有效地抵抗背景作弊,从而在UCF101,HMDB51和Diving48数据集中实现了最先进的性能。
translated by 谷歌翻译
对比学习表明,在自我监督时空表示学习中有希望的潜力。大多数作品天真地采样不同的剪辑以构建正面和负对。但是,我们观察到该公式将模型倾向于背景场景偏见。根本原因是双重的。首先,场景差异通常比运动差异更明显,更容易区分。其次,从同一视频中采样的剪辑通常具有相似的背景,但具有不同的动作。仅将它们作为正对就可以将模型绘制为静态背景而不是运动模式。为了应对这一挑战,本文提出了一种新颖的双重对比配方。具体而言,我们将输入RGB视频序列分解为两种互补模式,静态场景和动态运动。然后,将原始的RGB功能分别靠近静态特征和对齐动态特征。这样,将静态场景和动态运动同时编码为紧凑的RGB表示。我们通过激活图进一步进行特征空间解耦,以提炼静态和动态相关的特征。我们将我们的方法称为\ textbf {d} ual \ textbf {c} intrastive \ textbf {l} ginal for spatio-tempormal \ textbf {r} ePresentation(dclr)。广泛的实验表明,DCLR学习有效的时空表示,并在UCF-101,HMDB-51和潜水-48数据集中获得最先进或可比性的性能。
translated by 谷歌翻译
通过自学学习的视觉表示是一项极具挑战性的任务,因为网络需要在没有监督提供的主动指导的情况下筛选出相关模式。这是通过大量数据增强,大规模数据集和过量量的计算来实现的。视频自我监督学习(SSL)面临着额外的挑战:视频数据集通常不如图像数据集那么大,计算是一个数量级,并且优化器所必须通过的伪造模式数量乘以几倍。因此,直接从视频数据中学习自我监督的表示可能会导致次优性能。为了解决这个问题,我们建议在视频表示学习框架中利用一个以自我或语言监督为基础的强大模型,并在不依赖视频标记的数据的情况下学习强大的空间和时间信息。为此,我们修改了典型的基于视频的SSL设计和目标,以鼓励视频编码器\ textit {subsume}基于图像模型的语义内容,该模型在通用域上训练。所提出的算法被证明可以更有效地学习(即在较小的时期和较小的批次中),并在单模式SSL方法中对标准下游任务进行了新的最新性能。
translated by 谷歌翻译
Contrastive representation learning has proven to be an effective self-supervised learning method for images and videos. Most successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation should contain relations between the instances, or semantic similarity and dissimilarity, that contrastive learning harms by considering all negatives as noise. To circumvent this issue, we propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft contrastive one that brings the positives closer and estimates a continuous distribution to push or pull negative instances based on their learned similarities. We validate empirically our approach on both image and video representation learning. We show that SCE performs competitively with the state of the art on the ImageNet linear evaluation protocol for fewer pretraining epochs and that it generalizes to several downstream image tasks. We also show that SCE reaches state-of-the-art results for pretraining video representation and that the learned representation can generalize to video downstream tasks.
translated by 谷歌翻译
最近的自我监督视频表示学习方法通​​过探索视频的基本属性,例如探讨了视频的基本属性。速度,时间顺序等。这项工作利用了一个必不可少的视频,\ Texit {视频连续性}的必要性,以获取自我监督表示学习的监督信号。具体而言,我们制定了三个新的连续性相关的借口任务,即连续性理由,不连续的本地化和缺失部分近似,该近似地监督用于视频表示学习的共享骨干。这种自我监督方法被称为连续性感知网络(CPNet),解决了三个任务,并鼓励骨干网络学习本地和长距离的运动和情境表示。它在多个下游任务中优于现有技术,例如动作识别,视频检索和动作定位。另外,视频连续性可以与其他粗粒度视频属性互补,用于表示学习的其他粗粒视频属性,并将所提出的借口任务集成到现有技术中,可以产生很大的性能增益。
translated by 谷歌翻译
对比学习在视频表示学习中表现出了巨大的潜力。但是,现有方法无法充分利用短期运动动态,这对于各种下游视频理解任务至关重要。在本文中,我们提出了运动敏感的对比度学习(MSCL),该学习将光学流捕获的运动信息注入RGB帧中,以增强功能学习。为了实现这一目标,除了剪辑级全球对比度学习外,我们还开发了局部运动对比度学习(LMCL),具有两种模式的框架级对比目标。此外,我们引入流动旋转增强(FRA),以生成额外的运动除件负面样品和运动差分采样(MDS)以准确筛选训练样品。对标准基准测试的广泛实验验证了该方法的有效性。以常用的3D RESNET-18为骨干,我们在UCF101上获得了91.5 \%的前1个精度,而在视频分类中进行了一些v2的v2,以及65.6 \%的top-1 top-1召回ucf1011对于视频检索,特别是改善了最新的。
translated by 谷歌翻译
对比度学习最近在无监督的视觉表示学习中显示出巨大的潜力。在此轨道中的现有研究主要集中于图像内不变性学习。学习通常使用丰富的图像内变换来构建正对,然后使用对比度损失最大化一致性。相反,相互影响不变性的优点仍然少得多。利用图像间不变性的一个主要障碍是,尚不清楚如何可靠地构建图像间的正对,并进一步从它们中获得有效的监督,因为没有配对注释可用。在这项工作中,我们提出了一项全面的实证研究,以更好地了解从三个主要组成部分的形象间不变性学习的作用:伪标签维护,采样策略和决策边界设计。为了促进这项研究,我们引入了一个统一的通用框架,该框架支持无监督的内部和间形内不变性学习的整合。通过精心设计的比较和分析,揭示了多个有价值的观察结果:1)在线标签收敛速度比离线标签更快; 2)半硬性样品比硬否定样品更可靠和公正; 3)一个不太严格的决策边界更有利于形象间的不变性学习。借助所有获得的食谱,我们的最终模型(即InterCLR)对多个标准基准测试的最先进的内图内不变性学习方法表现出一致的改进。我们希望这项工作将为设计有效的无监督间歇性不变性学习提供有用的经验。代码:https://github.com/open-mmlab/mmselfsup。
translated by 谷歌翻译
尽管对视频表示学习的自我监督预先预测方法的突出成功,但在未标记的预测数据集很小或源任务(预先训练)中的未标记数据和目标任务中标记的数据(Fineetuning)之间的域差异。为了缓解这些问题,我们提出了一种新的方法来通过基于知识相似性蒸馏,Auxskd的辅助预押阶段补充自我监督预测,以便更好地推广,具有明显较少量的视频数据,例如,动力学-100而不是动力学-400。我们的方法通过捕获未标记的视频数据的段之间的相似信息,将其知识迭代地将其知识蒸发到学生模型。然后,学生模型通过利用此先验知识来解决借口任务。我们还介绍了一种新颖的借口任务,视频段速度预测或VSPP,这需要我们的模型来预测输入视频的随机选择段的播放速度,以提供更可靠的自我监督的表示。我们的实验结果表明,在K100上预先训练时,UCF101和HMDB51数据集的最先进结果卓越。此外,我们表明我们的辅助辅助辅助持久性辅助阶段作为最近的艺术的自我监督方法(例如VideOpace和Rspnet),可以在UCF101和HMDB51上提高结果。我们的代码即将发布。
translated by 谷歌翻译
基于对比度学习的基于自我监督的骨架识别引起了很多关注。最近的文献表明,数据增强和大量对比度对对于学习此类表示至关重要。在本文中,我们发现,基于正常增强的直接扩展对对比对的表现有限,因为随着培训的进展,对比度对从正常数据增强到损失的贡献越小。因此,我们深入研究了对比对比对的,以进行对比学习。由混合增强策略的成功激励,通过综合新样本来改善许多任务的执行,我们提出了Skelemixclr:一种与时空的学习框架,具有时空骨架混合增强(Skelemix),以补充当前的对比样品,以补充当前的对比样品。首先,Skelemix利用骨架数据的拓扑信息将两个骨骼序列混合在一起,通过将裁切的骨骼片段(修剪视图)与其余的骨架序列(截断视图)随机梳理。其次,应用时空掩码池在特征级别上分开这两个视图。第三,我们将对比度对与这两种观点扩展。 SkelemixClr利用修剪和截断的视图来提供丰富的硬对比度对,因为它们由于图形卷积操作而涉及彼此的某些上下文信息,这使模型可以学习更好的运动表示以进行动作识别。在NTU-RGB+D,NTU120-RGB+D和PKU-MMD数据集上进行了广泛的实验表明,SkelemixClr实现了最先进的性能。代码可在https://github.com/czhaneva/skelemixclr上找到。
translated by 谷歌翻译
对比学习的核心思想是区分不同的实例,并从相同实例中强制不同的视图以共享相同的表示。为了避免琐碎的解决方案,增强在生成不同视图中起重要作用,其中显示了随机裁剪来对模型来学习广义和鲁棒的表示。常用的随机作物操作保持沿着训练过程不变的两个视图之间的分布。在这项工作中,我们表明,自适应地控制沿着训练过程的两个增强视图之间的视差增强了学习的表示的质量。具体而言,我们提出了一种参数立方裁剪操作,用于视频对比度学习,其通过可分辨率的3D仿射变换自动批量3D立方。参数使用对抗目标与视频骨干同时培训,并从数据中学习最佳裁剪策略。可视化表明,参数自适应地控制了两个增强视图之间的中心距离和IOU,并且沿着训练过程的差异中的学习变化是有利于学习强烈的表示。广泛的消融研究证明了所提出的参数对多个对比学习框架和视频骨干的有效性。可以使用代码和模型。
translated by 谷歌翻译
The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.
translated by 谷歌翻译
Recent self-supervised video representation learning methods focus on maximizing the similarity between multiple augmented views from the same video and largely rely on the quality of generated views. However, most existing methods lack a mechanism to prevent representation learning from bias towards static information in the video. In this paper, we propose frequency augmentation (FreqAug), a spatio-temporal data augmentation method in the frequency domain for video representation learning. FreqAug stochastically removes specific frequency components from the video so that learned representation captures essential features more from the remaining information for various downstream tasks. Specifically, FreqAug pushes the model to focus more on dynamic features rather than static features in the video via dropping spatial or temporal low-frequency components. To verify the generality of the proposed method, we experiment with FreqAug on multiple self-supervised learning frameworks along with standard augmentations. Transferring the improved representation to five video action recognition and two temporal action localization downstream tasks shows consistent improvements over baselines.
translated by 谷歌翻译
尽管通过深度卷积神经网络进行了视频理解的巨大进展,但现有方法学到的特征表示可能偏置到静态视觉线索。为了解决这个问题,我们提出了一种基于自我监督视频表示学习的概率分析来抑制静态视觉提示(SSVC)的新方法。在我们的方法中,首先编码视频帧以通过标准化流程根据标准正常分布获得潜在变量。通过将视频中的静态因子建模为随机变量,每个潜在变量的条件分布变为偏移并缩放正常。然后,选择沿着时间的较大潜伏变量作为静态线索并抑制以生成运动保留的视频。最后,通过运动保存的视频构建了正对,以便对比学习,以减轻对静态线索的表示偏差问题。较少偏置的视频表示可以更广泛地推广到各种下游任务。关于公开的基准测试的广泛实验表明,当仅使用单个RGB模型用于预训练时,所提出的方法优于现有技术。
translated by 谷歌翻译