自我监督的方法已通过端到端监督学习的图像分类显着缩小了差距。但是,在人类动作视频的情况下,外观和运动都是变化的重要因素,因此该差距仍然很大。这样做的关键原因之一是,采样对类似的视频剪辑,这是许多自我监督的对比学习方法所需的步骤,目前是保守的,以避免误报。一个典型的假设是,类似剪辑仅在单个视频中暂时关闭,从而导致运动相似性的示例不足。为了减轻这种情况,我们提出了SLIC,这是一种基于聚类的自我监督的对比度学习方法,用于人类动作视频。我们的关键贡献是,我们通过使用迭代聚类来分组类似的视频实例来改善传统的视频内积极采样。这使我们的方法能够利用集群分配中的伪标签来取样更艰难的阳性和负面因素。在UCF101上,SLIC的表现优于最先进的视频检索基线 +15.4%,而直接转移到HMDB51时,SLIC检索基线的率高为15.4%, +5.7%。通过用于动作分类的端到端登录,SLIC在UCF101上获得了83.2%的TOP-1准确性(+0.8%),而HMDB51(+1.6%)上的fric fineTuns in top-1 finetuning。在动力学预处理后,SLIC还与最先进的行动分类竞争。
translated by 谷歌翻译
The objective of this paper is visual-only self-supervised video representation learning. We make the following contributions: (i) we investigate the benefit of adding semantic-class positives to instance-based Info Noise Contrastive Estimation (In-foNCE) training, showing that this form of supervised contrastive learning leads to a clear improvement in performance; (ii) we propose a novel self-supervised co-training scheme to improve the popular infoNCE loss, exploiting the complementary information from different views, RGB streams and optical flow, of the same data source by using one view to obtain positive class samples for the other; (iii) we thoroughly evaluate the quality of the learnt representation on two different downstream tasks: action recognition and video retrieval. In both cases, the proposed approach demonstrates state-of-the-art or comparable performance with other self-supervised approaches, whilst being significantly more efficient to train, i.e. requiring far less training data to achieve similar performance.
translated by 谷歌翻译
我们介绍了一种对比视频表示方法,它使用课程学习在对比度培训中施加动态抽样策略。更具体地说,Concur以易于正面样本(在时间上和语义上相似的剪辑上)开始对比度训练,并且随着训练的进行,它会有效地提高时间跨度,从而有效地采样了硬质阳性(时间为时间和语义上不同)。为了学习更好的上下文感知表示形式,我们还提出了一个辅助任务,以预测积极剪辑之间的时间距离。我们对两个流行的动作识别数据集进行了广泛的实验,即UCF101和HMDB51,我们提出的方法在两项视频动作识别和视频检索的基准任务上实现了最新的性能。我们通过使用R(2+1)D和C3D编码器以及对Kinetics-400和Kinetics-200200数据集的R(2+1)D和C3D编码器以及预训练的影响来探讨编码器骨架和预训练策略的影响。此外,一项详细的消融研究显示了我们提出的方法的每个组成部分的有效性。
translated by 谷歌翻译
我们提出了MACLR,这是一种新颖的方法,可显式执行从视觉和运动方式中学习的跨模式自我监督的视频表示。与以前的视频表示学习方法相比,主要关注学习运动线索的研究方法是隐含的RGB输入,MACLR丰富了RGB视频片段的标准对比度学习目标,具有运动途径和视觉途径之间的跨模式学习目标。我们表明,使用我们的MACLR方法学到的表示形式更多地关注前景运动区域,因此可以更好地推广到下游任务。为了证明这一点,我们在五个数据集上评估了MACLR,以进行动作识别和动作检测,并在所有数据集上展示最先进的自我监督性能。此外,我们表明MACLR表示可以像在UCF101和HMDB51行动识别的全面监督下所学的表示一样有效,甚至超过了对Vidsitu和SSV2的行动识别的监督表示,以及对AVA的动作检测。
translated by 谷歌翻译
我们呈现了一个用于学习视听表示的自我监督的框架。在我们的框架中引入了一种小说概念,其中除了学习模态和标准的“同步的”跨模型关系之外,riscross也会学习“异步”的跨模式关系。我们展示通过放松音频和视觉模态之间的时间同步性,网络了解强劲的时间不变的表示。我们的实验表明,音频和视觉方式的强大增强,可放松交叉模态时间同步优化性能。要预先绘制我们提出的框架,我们使用具有不同大小,动力学,动力学-400和augioset的不同数据集。学习的表示是在许多下游任务中评估的,即行动识别,声音分类和检索。 Crisscross显示了动作识别的最先进的性能(UCF101和HMDB51)和声音分类(ESC50)。将公开可用的代码和预赠品模型。
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
鉴于在图像领域的对比学习的成功,目前的自我监督视频表示学习方法通​​常采用对比损失来促进视频表示学习。然而,当空闲地拉动视频的两个增强视图更接近时,该模型倾向于将常见的静态背景作为快捷方式学习但不能捕获运动信息,作为背景偏置的现象。这种偏差使模型遭受弱泛化能力,导致在等下游任务中的性能较差,例如动作识别。为了减轻这种偏见,我们提出\ textbf {f} Oreground-b \ textbf {a} ckground \ textbf {me} rging(sm} rging(fame)故意将所选视频的移动前景区域故意构成到其他人的静态背景上。具体而言,没有任何非货架探测器,我们通过帧差和颜色统计从背景区域中提取移动前景,并在视频中擦拭背景区域。通过利用原始剪辑和熔融夹之间的语义一致性,该模型更多地关注运动模式,并从背景快捷方式中脱位。广泛的实验表明,FAME可以有效地抵抗背景作弊,从而在UCF101,HMDB51和Diving48数据集中实现了最先进的性能。
translated by 谷歌翻译
Contrastive representation learning has proven to be an effective self-supervised learning method for images and videos. Most successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation should contain relations between the instances, or semantic similarity and dissimilarity, that contrastive learning harms by considering all negatives as noise. To circumvent this issue, we propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft contrastive one that brings the positives closer and estimates a continuous distribution to push or pull negative instances based on their learned similarities. We validate empirically our approach on both image and video representation learning. We show that SCE performs competitively with the state of the art on the ImageNet linear evaluation protocol for fewer pretraining epochs and that it generalizes to several downstream image tasks. We also show that SCE reaches state-of-the-art results for pretraining video representation and that the learned representation can generalize to video downstream tasks.
translated by 谷歌翻译
聚类是无监督学习中无处不在的工具。大多数现有的自我监督表示方法通常基于视觉上的特征聚类样本。尽管这对于基于图像的自我审视非常有效,但它通常会失败,因为视频需要理解运动而不是专注于背景。将光流作为与RGB的互补信息可以减轻此问题。但是,我们观察到,两种观点的幼稚组合并不能带来有意义的收益。在本文中,我们提出了一种结合两种观点的原则方法。具体而言,我们提出了一种新颖的聚类策略,在该策略中,我们将每个视图的初始群集分配作为指导其他视图的最终群集分配。这个想法将对这两种视图强制执行类似的群集结构,并且形成的簇在语义上是抽象的,并且对来自每个单独视图的嘈杂输入。此外,我们提出了一种新颖的正则化策略来解决特征崩溃问题,这在基于聚类的自学学习方法中很常见。我们的广泛评估表明,我们学到的表示对下游任务的有效性,例如视频检索和动作识别。具体来说,我们在UCF上胜过7%,在HMDB上胜过4%,用于视频检索,而在UCF上的最高状态为5%,而HMDB则在HMDB上进行视频分类6%
translated by 谷歌翻译
我们介绍了一种新颖的自我监督的对比学习方法,以了解来自未标记视频的表示。现有方法忽略了输入失真的细节,例如,通过学习与时间转换的不变性。相反,我们认为视频表示应该保留视频动态并反映输入的时间操纵。因此,我们利用新的约束来构建对时间转换和更好的捕获视频动态的表示表示。在我们的方法中,视频的增强剪辑之间的相对时间转换被编码在向量中并与其他转换向量形成对比。为了支持时间的设备,我们还提出了将视频的两个剪辑的自我监督分类为1.重叠2.订购或3.无序。我们的实验表明,时代的表示达到最先进的结果,导致UCF101,HMDB51和潜水48上的视频检索和动作识别基准。
translated by 谷歌翻译
对于人类的行动理解,流行的研究方向是分析具有明确的语义含量的短视频剪辑,例如跳跃和饮酒。然而,了解短语行动的方法不能直接翻译成长期以来的人类动态,如跳舞,即使在语义上也是挑战的挑战。同时,自然语言处理(NLP)社区通过大规模预培训解决了稀缺的类似挑战,这改善了一种模型的几个下游任务。在这项工作中,我们研究如何以自我监督的方式进行分段和群集视频,即Acton Discovery,朝向视频标记的主要障碍。我们提出了一种两级框架,首先通过对应于它们的时间上下文的视频帧的两个增强视图对比其次的视频帧的两个增强视图来获得帧智表示。然后通过k-means群集视频集集中的帧展表示。然后通过从同一簇内的帧形成连续的运动序列来自动提取actons。通过标准化的相互信息和语言熵,我们通过Kendall的Tau和Lexicon构建步骤进行评估框架明智的表现。我们还研究了这个标记化的三种应用:类型分类,行动细分和行动组成。在AIST ++和PKU-MMD数据集上,与几个基线相比,Actons带来了显着的性能改进。
translated by 谷歌翻译
最近的自我监督视频表示学习方法通​​过探索视频的基本属性,例如探讨了视频的基本属性。速度,时间顺序等。这项工作利用了一个必不可少的视频,\ Texit {视频连续性}的必要性,以获取自我监督表示学习的监督信号。具体而言,我们制定了三个新的连续性相关的借口任务,即连续性理由,不连续的本地化和缺失部分近似,该近似地监督用于视频表示学习的共享骨干。这种自我监督方法被称为连续性感知网络(CPNet),解决了三个任务,并鼓励骨干网络学习本地和长距离的运动和情境表示。它在多个下游任务中优于现有技术,例如动作识别,视频检索和动作定位。另外,视频连续性可以与其他粗粒度视频属性互补,用于表示学习的其他粗粒视频属性,并将所提出的借口任务集成到现有技术中,可以产生很大的性能增益。
translated by 谷歌翻译
The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.
translated by 谷歌翻译
通过自学学习的视觉表示是一项极具挑战性的任务,因为网络需要在没有监督提供的主动指导的情况下筛选出相关模式。这是通过大量数据增强,大规模数据集和过量量的计算来实现的。视频自我监督学习(SSL)面临着额外的挑战:视频数据集通常不如图像数据集那么大,计算是一个数量级,并且优化器所必须通过的伪造模式数量乘以几倍。因此,直接从视频数据中学习自我监督的表示可能会导致次优性能。为了解决这个问题,我们建议在视频表示学习框架中利用一个以自我或语言监督为基础的强大模型,并在不依赖视频标记的数据的情况下学习强大的空间和时间信息。为此,我们修改了典型的基于视频的SSL设计和目标,以鼓励视频编码器\ textit {subsume}基于图像模型的语义内容,该模型在通用域上训练。所提出的算法被证明可以更有效地学习(即在较小的时期和较小的批次中),并在单模式SSL方法中对标准下游任务进行了新的最新性能。
translated by 谷歌翻译
对比学习表明,在自我监督时空表示学习中有希望的潜力。大多数作品天真地采样不同的剪辑以构建正面和负对。但是,我们观察到该公式将模型倾向于背景场景偏见。根本原因是双重的。首先,场景差异通常比运动差异更明显,更容易区分。其次,从同一视频中采样的剪辑通常具有相似的背景,但具有不同的动作。仅将它们作为正对就可以将模型绘制为静态背景而不是运动模式。为了应对这一挑战,本文提出了一种新颖的双重对比配方。具体而言,我们将输入RGB视频序列分解为两种互补模式,静态场景和动态运动。然后,将原始的RGB功能分别靠近静态特征和对齐动态特征。这样,将静态场景和动态运动同时编码为紧凑的RGB表示。我们通过激活图进一步进行特征空间解耦,以提炼静态和动态相关的特征。我们将我们的方法称为\ textbf {d} ual \ textbf {c} intrastive \ textbf {l} ginal for spatio-tempormal \ textbf {r} ePresentation(dclr)。广泛的实验表明,DCLR学习有效的时空表示,并在UCF-101,HMDB-51和潜水-48数据集中获得最先进或可比性的性能。
translated by 谷歌翻译
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the same short video are pulled together in the embedding space, while clips from different videos are pushed away. We study what makes for good data augmentations for video self-supervised learning and find that both spatial and temporal information are crucial. We carefully design data augmentations involving spatial and temporal cues. Concretely, we propose a temporally consistent spatial augmentation method to impose strong spatial augmentations on each frame of the video while maintaining the temporal consistency across frames. We also propose a sampling-based temporal augmentation method to avoid overly enforcing invariance on clips that are distant in time. On Kinetics-600, a linear classifier trained on the representations learned by CVRL achieves 70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50) backbone, outperforming ImageNet supervised pre-training by 15.7% and SimCLR unsupervised pre-training by 18.8% using the same inflated R3D-50. The performance of CVRL can be further improved to 72.9% with a larger R3D-152 (2× filters) backbone, significantly closing the gap between unsupervised and supervised video representation learning. Our code and models will be available at https://github.com/tensorflow/models/tree/master/official/.
translated by 谷歌翻译
对比度学习最近在无监督的视觉表示学习中显示出巨大的潜力。在此轨道中的现有研究主要集中于图像内不变性学习。学习通常使用丰富的图像内变换来构建正对,然后使用对比度损失最大化一致性。相反,相互影响不变性的优点仍然少得多。利用图像间不变性的一个主要障碍是,尚不清楚如何可靠地构建图像间的正对,并进一步从它们中获得有效的监督,因为没有配对注释可用。在这项工作中,我们提出了一项全面的实证研究,以更好地了解从三个主要组成部分的形象间不变性学习的作用:伪标签维护,采样策略和决策边界设计。为了促进这项研究,我们引入了一个统一的通用框架,该框架支持无监督的内部和间形内不变性学习的整合。通过精心设计的比较和分析,揭示了多个有价值的观察结果:1)在线标签收敛速度比离线标签更快; 2)半硬性样品比硬否定样品更可靠和公正; 3)一个不太严格的决策边界更有利于形象间的不变性学习。借助所有获得的食谱,我们的最终模型(即InterCLR)对多个标准基准测试的最先进的内图内不变性学习方法表现出一致的改进。我们希望这项工作将为设计有效的无监督间歇性不变性学习提供有用的经验。代码:https://github.com/open-mmlab/mmselfsup。
translated by 谷歌翻译
运动,作为视频中最明显的现象,涉及随时间的变化,对视频表示学习的发展是独一无二的。在本文中,我们提出了问题:特别是对自我监督视频表示学习的运动有多重要。为此,我们撰写了一个二重奏,用于利用对比学习政权的数据增强和特征学习的动作。具体而言,我们介绍了一种以前的对比学习(MCL)方法,其将这种二重奏视为基础。一方面,MCL大写视频中的每个帧的光流量,以在时间上和空间地样本地样本(即,横跨时间的相关帧斑块的序列)作为数据增强。另一方面,MCL进一步将卷积层的梯度图对准来自空间,时间和时空视角的光流程图,以便在特征学习中地进行地面运动信息。在R(2 + 1)D骨架上进行的广泛实验证明了我们MCL的有效性。在UCF101上,在MCL学习的表示上培训的线性分类器实现了81.91%的前1个精度,表现优于6.78%的训练预测。在动力学-400上,MCL在线方案下实现66.62%的前1个精度。代码可在https://github.com/yihengzhang-cv/mcl-motion-focused-contrastive-learning。
translated by 谷歌翻译
通过对比学习,自我监督学习最近在视觉任务中显示了巨大的潜力,这旨在在数据集中区分每个图像或实例。然而,这种情况级别学习忽略了实例之间的语义关系,有时不希望地从语义上类似的样本中排斥锚,被称为“假否定”。在这项工作中,我们表明,对于具有更多语义概念的大规模数据集来说,虚假否定的不利影响更为重要。为了解决这个问题,我们提出了一种新颖的自我监督的对比学习框架,逐步地检测并明确地去除假阴性样本。具体地,在训练过程之后,考虑到编码器逐渐提高,嵌入空间变得更加语义结构,我们的方法动态地检测增加的高质量假否定。接下来,我们讨论两种策略,以明确地在对比学习期间明确地消除检测到的假阴性。广泛的实验表明,我们的框架在有限的资源设置中的多个基准上表现出其他自我监督的对比学习方法。
translated by 谷歌翻译
Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or "views") of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a "swapped" prediction mechanism where we predict the code of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.
translated by 谷歌翻译