基于骨架的人类动作识别最近引起了人们对外观变化的敏感性和更多骨架数据的可访问性的敏感性。但是,即使在实践中捕获的3D骨骼也对观点和方向仍然敏感,并给出了不同人体关节的阻塞和人类关节定位中的误差。骨骼数据的这种视图差异可能会严重影响动作识别的性能。为了解决这个问题,我们在本文中提出了一种新的视图不变的表示方法,而没有任何手动动作标签,用于基于骨架的人类行动识别。具体而言,我们通过最大化从不同观点提取的表示形式之间的相互信息来利用同一个人同时对同一个人进行的多视图骨架数据,然后提出一个全局 - 局部对比度损失,以模拟多规模CO - 空间和时间域中的发生关系。广泛的实验结果表明,所提出的方法对输入骨骼数据的视图差异是可靠的,并显着提高了基于无监督骨架的人类动作方法的性能,从而在两个具有挑战性的多视图上产生了新的最新精确度Pkummd和NTU RGB+d的基准。
translated by 谷歌翻译
基于骨架的动作识别广泛用于各种区域,例如监视和人机相互作用。现有模型主要以监督方式学习,从而根据标签昂贵时可能是不可行的大规模标记数据。在本文中,我们提出了一种新的对比度重建表示学习网络(CRRL),其同时为无监督的基于骨架的动作识别捕获姿势和运动动力学。它主要由三部分组成:序列重建器,对比运动学习者和信息定影器。序列重建者通过重建学习从骨架坐标序列的表示,因此学习的表示倾向于聚焦在琐碎的姿势坐标上并且在运动学习中犹豫不决。为了增强运动的学习,对比运动学习者分别在从坐标序列和附加速度序列中学到的表示之间进行对比学习。最后,在信息定位器中,我们探讨了将序列重建器和对比运动学习者结合的各种策略,并建议通过基于知识蒸馏的融合策略同时捕获姿势和动作,从而将动作学习从对比运动学习者转移到序列中的序列重建者。在若干基准测试中,即NTU RGB + D 60,NTU RGB + D 120,CMU Mocap和NW-UCLA的实验结果证明了所提出的CRRL方法​​的承诺,到目前为止的现有方法。
translated by 谷歌翻译
基于骨架的人类行动识别是由于其复杂的动态而是一项长期挑战。动态的一些细颗粒细节在分类中起着至关重要的作用。现有的工作主要集中在设计带有更复杂的相邻矩阵的增量神经网络上,以捕获关节关系的细节。但是,他们仍然很难区分具有广泛相似运动模式但属于不同类别的动作。有趣的是,我们发现运动模式上的细微差异可以显着放大,并且可以轻松地通过指定的视图方向来区分观众,在这些方向上,该属性以前从未得到充分探索。与以前的工作截然不同,我们通过提出一种概念上简单而有效的多视图策略来提高性能,该策略从一系列动态视图功能中识别动作。具体而言,我们设计了一个新颖的骨骼锚定建议(SAP)模块,该模块包含一个多头结构来学习一组视图。为了学习不同观点的特征学习,我们引入了一个新的角度表示,以在不同视图下的动作转换并将转换归因于基线模型。我们的模块可以与现有的动作分类模型无缝合作。与基线模型合并,我们的SAP模块在许多具有挑战性的基准上展示了明显的性能增长。此外,全面的实验表明,我们的模型始终击败了最新的实验,并且在处理损坏的数据时保持有效和健壮。相关代码将在https://github.com/ideal-idea/sap上提供。
translated by 谷歌翻译
Dynamics of human body skeletons convey significant information for human action recognition. Conventional approaches for modeling skeletons usually rely on hand-crafted parts or traversal rules, thus resulting in limited expressive power and difficulties of generalization. In this work, we propose a novel model of dynamic skeletons called Spatial-Temporal Graph Convolutional Networks (ST-GCN), which moves beyond the limitations of previous methods by automatically learning both the spatial and temporal patterns from data. This formulation not only leads to greater expressive power but also stronger generalization capability. On two large datasets, Kinetics and NTU-RGBD, it achieves substantial improvements over mainstream methods.
translated by 谷歌翻译
图形卷积网络(GCN)优于基于骨架的人类动作识别领域的先前方法,包括人类的互动识别任务。但是,在处理相互作用序列时,基于GCN的当前方法只需将两人骨架分为两个离散序列,然后以单人动作分类的方式分别执行图形卷积。这种操作忽略了丰富的交互信息,并阻碍了语义模式学习的有效空间关系建模。为了克服上述缺点,我们引入了一个新型的统一的两人图,代表关节之间的空间相互作用相关性。此外,提出了适当设计的图形标记策略,以使我们的GCN模型学习判别时空交互特征。实验显示了使用拟议的两人图形拓扑时的相互作用和单个动作的准确性提高。最后,我们提出了一个两人的图形卷积网络(2P-GCN)。提出的2P-GCN在三个相互作用数据集(SBU,NTU-RGB+D和NTU-RGB+D 120)的四个基准测试基准上获得了最新结果。
translated by 谷歌翻译
图表卷积网络(GCNS)的方法在基于骨架的动作识别任务上实现了高级性能。然而,骨架图不能完全代表骨架数据中包含的运动信息。此外,基于GCN的方法中的骨架图的拓扑是根据自然连接手动设置的,并且它为所有样本都固定,这不能很好地适应不同的情况。在这项工作中,我们提出了一种新的动态超图卷积网络(DHGCN),用于基于骨架的动作识别。 DHGCN使用超图来表示骨架结构,以有效利用人类关节中包含的运动信息。根据其移动动态地分配了骨架超图中的每个接头,并且我们模型中的超图拓扑可以根据关节之间的关系动态调整到不同的样本。实验结果表明,我们的模型的性能在三个数据集中实现了竞争性能:动力学 - 骨架400,NTU RGB + D 60和NTU RGB + D 120。
translated by 谷歌翻译
当前的骨架动作表示方法学习的方法通常集中在受约束的场景上,其中在实验室环境中记录了视频和骨骼数据。在处理现实世界视频中估计的骨骼数据时,由于受试者和摄像机观点之间的差异很大,因此此类方法的性能差。为了解决这个问题,我们通过一种新颖的视图自动编码器介绍了自我监视的骨架动作表示学习。通过Leverage在不同的人类表演者之间进行运动重新定位作为借口任务,以便在2D或3D骨架序列的视觉表示之上删除潜在的动作特异性“运动”特征。这种“运动”功能对于骨架几何和相机视图是不变的,并允许通过辅助,跨视图和跨视图动作分类任务。我们进行了一项研究,重点是针对基于骨架的动作识别的转移学习,并在现实世界数据(例如Posetics)上进行自我监督的预训练。我们的结果表明,从VIA中学到的骨架表示足以提高最新动作分类精度,不仅在3D实验室数据集(例如NTU-RGB+D 60和NTU-RGB+D 120)上,而且还在在仅准确估计2D数据的现实数据集中,例如Toyota Smarthome,UAV-Human和Penn Action。
translated by 谷歌翻译
基于对比度学习的基于自我监督的骨架识别引起了很多关注。最近的文献表明,数据增强和大量对比度对对于学习此类表示至关重要。在本文中,我们发现,基于正常增强的直接扩展对对比对的表现有限,因为随着培训的进展,对比度对从正常数据增强到损失的贡献越小。因此,我们深入研究了对比对比对的,以进行对比学习。由混合增强策略的成功激励,通过综合新样本来改善许多任务的执行,我们提出了Skelemixclr:一种与时空的学习框架,具有时空骨架混合增强(Skelemix),以补充当前的对比样品,以补充当前的对比样品。首先,Skelemix利用骨架数据的拓扑信息将两个骨骼序列混合在一起,通过将裁切的骨骼片段(修剪视图)与其余的骨架序列(截断视图)随机梳理。其次,应用时空掩码池在特征级别上分开这两个视图。第三,我们将对比度对与这两种观点扩展。 SkelemixClr利用修剪和截断的视图来提供丰富的硬对比度对,因为它们由于图形卷积操作而涉及彼此的某些上下文信息,这使模型可以学习更好的运动表示以进行动作识别。在NTU-RGB+D,NTU120-RGB+D和PKU-MMD数据集上进行了广泛的实验表明,SkelemixClr实现了最先进的性能。代码可在https://github.com/czhaneva/skelemixclr上找到。
translated by 谷歌翻译
图形卷积网络由于非欧几里得数据的出色建模能力而广泛用于基于骨架的动作识别。由于图形卷积是局部操作,因此它只能利用短距离关节依赖性和短期轨迹,但无法直接建模遥远的关节关系和远程时间信息,这些信息对于区分各种动作至关重要。为了解决此问题,我们提出了多尺度的空间图卷积(MS-GC)模块和一个多尺度的时间图卷积(MT-GC)模块,以在空间和时间尺寸中丰富模型的接受场。具体而言,MS-GC和MT-GC模块将相应的局部图卷积分解为一组子图形卷积,形成了层次的残差体系结构。在不引入其他参数的情况下,该功能将通过一系列子图卷积处理,每个节点都可以与其邻域一起完成多个空间和时间聚集。因此,最终的等效接收场被扩大,能够捕获空间和时间域中的短期和远程依赖性。通过将这两个模块耦合为基本块,我们进一步提出了一个多尺度的空间时间图卷积网络(MST-GCN),该网络(MST-GCN)堆叠了多个块以学习有效的运动表示行动识别的运动表示。拟议的MST-GCN在三个具有挑战性的基准数据集(NTU RGB+D,NTU-1220 RGB+D和动力学 - 骨骼)上实现了出色的性能,用于基于骨架的动作识别。
translated by 谷歌翻译
我们提出了一个新的变压器模型,用于无监督学习骨架运动序列的任务。用于基于无监督骨骼的动作学习的现有变压器模型被了解到每个关节从相邻帧的瞬时速度没有全球运动信息。因此,该模型在学习全身运动和暂时遥远的关节方面的关注方面存在困难。此外,模型中尚未考虑人与人之间的互动。为了解决全身运动,远程时间动态和人与人之间的互动的学习,我们设计了一种全球和本地的注意机制,在其中,全球身体动作和本地关节运动相互关注。此外,我们提出了一种新颖的预处理策略,即多间隔姿势位移预测,以在不同的时间范围内学习全球和本地关注。提出的模型成功地学习了关节的局部动力学,并从运动序列中捕获了全局上下文。我们的模型优于代表性基准中明显边缘的最先进模型。代码可在https://github.com/boeun-kim/gl-transformer上找到。
translated by 谷歌翻译
视频自我监督的学习是一项挑战的任务,这需要模型的显着表达力量来利用丰富的空间时间知识,并从大量未标记的视频产生有效的监督信号。但是,现有方法未能提高未标记视频的时间多样性,并以明确的方式忽略精心建模的多尺度时间依赖性。为了克服这些限制,我们利用视频中的多尺度时间依赖性,并提出了一个名为时间对比图学习(TCGL)的新型视频自我监督学习框架,该框架共同模拟了片段间和片段间的时间依赖性用混合图对比学习策略学习的时间表示学习。具体地,首先引入空间 - 时间知识发现(STKD)模块以基于离散余弦变换的频域分析从视频中提取运动增强的空间时间表。为了显式模拟未标记视频的多尺度时间依赖性,我们的TCGL将关于帧和片段命令的先前知识集成到图形结构中,即片段/间隙间时间对比图(TCG)。然后,特定的对比学习模块旨在最大化不同图形视图中节点之间的协议。为了为未标记的视频生成监控信号,我们介绍了一种自适应片段订购预测(ASOP)模块,它利用视频片段之间的关系知识来学习全局上下文表示并自适应地重新校准通道明智的功能。实验结果表明我们的TCGL在大规模行动识别和视频检索基准上的最先进方法中的优势。
translated by 谷歌翻译
对于人类的行动理解,流行的研究方向是分析具有明确的语义含量的短视频剪辑,例如跳跃和饮酒。然而,了解短语行动的方法不能直接翻译成长期以来的人类动态,如跳舞,即使在语义上也是挑战的挑战。同时,自然语言处理(NLP)社区通过大规模预培训解决了稀缺的类似挑战,这改善了一种模型的几个下游任务。在这项工作中,我们研究如何以自我监督的方式进行分段和群集视频,即Acton Discovery,朝向视频标记的主要障碍。我们提出了一种两级框架,首先通过对应于它们的时间上下文的视频帧的两个增强视图对比其次的视频帧的两个增强视图来获得帧智表示。然后通过k-means群集视频集集中的帧展表示。然后通过从同一簇内的帧形成连续的运动序列来自动提取actons。通过标准化的相互信息和语言熵,我们通过Kendall的Tau和Lexicon构建步骤进行评估框架明智的表现。我们还研究了这个标记化的三种应用:类型分类,行动细分和行动组成。在AIST ++和PKU-MMD数据集上,与几个基线相比,Actons带来了显着的性能改进。
translated by 谷歌翻译
通过3D骨骼重新识别人的重新识别(RE-ID)是一个重要的新兴话题,具有许多优点。现有的解决方案很少探索骨骼结构或运动中有价值的身体成分关系,并且它们通常缺乏通过无标记的骨骼数据来学习人Re-ID的通用表示的能力。本文提出了一个通用的无监督骨骼原型对比度学习范式,其多级图关系学习(SPC-MGR),以从无标记的骨骼中学习有效的表示,以执行人员重新ID。具体而言,我们首先构建统一的多级骨架图,以完全模拟骨骼内的身体结构。然后,我们提出了一个多头结构关系层,以全面捕获图中物理连接的身体分量节点的关系。利用全层协作关系层来推断与运动相关的身体部位之间的协作,以捕获丰富的身体特征和可识别的步行模式。最后,我们提出了一个骨骼原型对比学习方案,该方案具有未标记的图表表达的相关实例,并将其固有的相似性与代表性的骨骼特征(“骨架原型”)进行对比,以学习人重新ID的歧视性骨骼表示。经验评估表明,SPC-MGR明显优于几种基于最新的骨架方法,并且还可以实现竞争激烈的人重新绩效,以实现更多的一般情况。
translated by 谷歌翻译
这项工作的目的是为视障和盲人的触觉设备做出贡献,以便让他们了解周围人的行为并与他们互动。首先,基于来自RGB-D序列的人类行动识别的最先进方法,我们使用Kinect提供的骨架信息,与解开的和统一的多尺度图卷积(MS-G3D)模型识别执行的行动。我们在真实场景中测试了这个模型,发现了一些约束和限制。接下来,我们使用CNN的MS-G3D和深度模态应用骨架模型之间的融合,以绕过讨论的限制。第三,识别的操作是用语义标记的标记,并将被映射到触摸感知的输出设备。
translated by 谷歌翻译
尽管完全监督的人类骨架序列建模成功,但使用自我监督的预训练进行骨架序列表示学习一直是一个活跃的领域,因为很难在大规模上获取特定于任务的骨骼注释。最近的研究重点是使用对比学习学习视频级别的时间和歧视性信息,但忽略了人类骨骼的层次空间时间。与视频级别的这种表面监督不同,我们提出了一种自我监督的分层预训练方案,该方案纳入了基于层次变压器的骨骼骨骼序列编码器(HI-TRS),以明确捕获空间,短期和长期和长期框架,剪辑和视频级别的时间依赖性分别。为了通过HI-TR评估提出的自我监督预训练方案,我们进行了广泛的实验,涵盖了三个基于骨架的下游任务,包括动作识别,动作检测和运动预测。根据监督和半监督评估协议,我们的方法实现了最新的性能。此外,我们证明了我们的模型在训练阶段中学到的先验知识具有强大的下游任务的转移能力。
translated by 谷歌翻译
人类相互作用的分析是人类运动分析的一个重要研究主题。它已经使用第一人称视觉(FPV)或第三人称视觉(TPV)进行了研究。但是,到目前为止,两种视野的联合学习几乎没有引起关注。原因之一是缺乏涵盖FPV和TPV的合适数据集。此外,FPV或TPV的现有基准数据集具有多个限制,包括样本数量有限,参与者,交互类别和模态。在这项工作中,我们贡献了一个大规模的人类交互数据集,即FT-HID数据集。 FT-HID包含第一人称和第三人称愿景的成对对齐的样本。该数据集是从109个不同受试者中收集的,并具有三种模式的90K样品。该数据集已通过使用几种现有的动作识别方法验证。此外,我们还引入了一种新型的骨骼序列的多视图交互机制,以及针对第一人称和第三人称视野的联合学习多流框架。两种方法都在FT-HID数据集上产生有希望的结果。可以预期,这一视力一致的大规模数据集的引入将促进FPV和TPV的发展,以及他们用于人类行动分析的联合学习技术。该数据集和代码可在\ href {https://github.com/endlichere/ft-hid} {here} {herefichub.com/endlichere.com/endlichere}中获得。
translated by 谷歌翻译
骨架数据具有低维度。然而,存在使用非常深刻和复杂的前馈神经网络来模拟骨架序列的趋势,而不考虑近年的复杂性。本文提出了一种简单但有效的多尺度语义引导的神经网络(MS-SGN),用于基于骨架的动作识别。我们明确地将关节(关节类型和帧指数)的高级语义引入网络,以增强关节的特征表示能力。此外,提出了一种多尺度策略对时间尺度变化具有鲁棒。此外,我们通过两个模块分层地利用了关节的关系,即,联合级模块,用于建模同一帧中的关节的相关性和帧级模块,用于建模帧的时间依赖性。 MSSGN在NTU60,NTU120和Sysu数据集上实现了比大多数方法更小的模型尺寸。
translated by 谷歌翻译
学习自我监督的视频表示主要集中在简单数据增强方案中产生的判别实例。然而,学习的表示通常无法通过看不见的相机观点来概括。为此,我们提出了ViewClr,它将自我监督的视频表示不变到相机视点变化。我们介绍了一个视图生成器,可以被视为任何自我监督的预先文本任务的学习增强,以生成视频的潜在视点表示。ViewClr最大化潜像观点表示与原始视点表示的相似性,使学习的视频编码器能够概括未见的相机视点。在跨视图基准数据集的实验,包括NTU RGB + D数据集,显示ViewClr代表了一种最先进的ViewPoint不变自我监控方法。
translated by 谷歌翻译
运动同步反映了相互作用二元组之间身体运动的协调。强大的深度学习模型(例如变压器网络)对运动同步的估计已自动化。但是,与其设计用于运动同步估计的专业网络,不如先前基于变压器的作品从其他任务(例如人类活动识别)中广泛采用了体系结构。因此,本文提出了一种基于骨架的图形变压器来进行运动同步估计。提出的模型应用了ST-GCN,这是一种空间图卷积神经网络,用于骨骼特征提取,然后是用于空间特征生成的空间变压器。空间变压器的指导是由相同的个体相同关节之间共享的独特设计的关节位置嵌入。此外,考虑到身体运动的周期性固有性,我们将时间相似性矩阵纳入了时间注意计算中。此外,与每个关节相关的置信度得分反映了姿势的不确定性,而先前关于运动同步估计的作品尚未充分强调这一点。由于变形金刚网络要求大量的数据进行训练,因此我们使用人类36M,一个用于人类活动识别的基准数据集构建了一个用于运动同步估算的数据集,并使用对比度学习鉴定了我们的模型。我们进一步应用知识蒸馏以减轻姿势探测器失败以隐私的方式引入的信息损失。我们将我们的方法与PT13上的代表性方法进行了比较,PT13是从自闭症治疗干预措施中收集的数据集。我们的方法达到了88.98%的总体准确性,并在保持数据隐私的同时超过了同行。
translated by 谷歌翻译
This paper targets unsupervised skeleton-based action representation learning and proposes a new Hierarchical Contrast (HiCo) framework. Different from the existing contrastive-based solutions that typically represent an input skeleton sequence into instance-level features and perform contrast holistically, our proposed HiCo represents the input into multiple-level features and performs contrast in a hierarchical manner. Specifically, given a human skeleton sequence, we represent it into multiple feature vectors of different granularities from both temporal and spatial domains via sequence-to-sequence (S2S) encoders and unified downsampling modules. Besides, the hierarchical contrast is conducted in terms of four levels: instance level, domain level, clip level, and part level. Moreover, HiCo is orthogonal to the S2S encoder, which allows us to flexibly embrace state-of-the-art S2S encoders. Extensive experiments on four datasets, i.e., NTU-60, NTU-120, PKU-MMD I and II, show that HiCo achieves a new state-of-the-art for unsupervised skeleton-based action representation learning in two downstream tasks including action recognition and retrieval, and its learned action representation is of good transferability. Besides, we also show that our framework is effective for semi-supervised skeleton-based action recognition. Our code is available at https://github.com/HuiGuanLab/HiCo.
translated by 谷歌翻译