视频异常检测(VAD)是计算机视觉中的重要主题。本文通过最新的自我监督学习进展的激励,通过解决直观而又具有挑战性的借口任务,即时空拼图拼图来解决VAD,该任务是一个多标签的精细粒度分类问题。我们的方法比现有作品具有几个优点:1)时空拼图难题是根据空间和时间维度分离的,分别捕获了高度歧视性的外观和运动特征; 2)完全排列用于提供涵盖各种难度水平的丰富拼图难题,从而使网络能够区分正常事件和异常事件之间的细微时空差异; 3)借口任务以端到端的方式解决,而无需依赖任何预训练的模型。我们的方法优于三个公共基准的最先进的方法。尤其是在上海校园中,其结果优于重建和基于预测的方法。
translated by 谷歌翻译
最近在文献中引入了用于视频异常检测的自我监督的多任务学习(SSMTL)框架。由于其准确的结果,该方法吸引了许多研究人员的注意。在这项工作中,我们重新审视了自我监督的多任务学习框架,并提出了对原始方法的几个更新。首先,我们研究各种检测方法,例如基于使用光流或背景减法检测高运动区域,因为我们认为当前使用的预训练的Yolov3是次优的,例如从未检测到运动中的对象或来自未知类的对象。其次,我们通过引入多头自发项模块的启发,通过引入多头自我发项模块,使3D卷积骨干链现代化。因此,我们替代地引入了2D和3D卷积视觉变压器(CVT)块。第三,为了进一步改善模型,我们研究了其他自我监督的学习任务,例如通过知识蒸馏来预测细分图,解决拼图拼图,通过知识蒸馏估算身体的姿势,预测掩盖的区域(Inpaining)和对抗性学习具有伪异常。我们进行实验以评估引入变化的性能影响。在找到框架的更有希望的配置后,称为SSMTL ++ V1和SSMTL ++ V2后,我们将初步实验扩展到了更多数据集,表明我们的性能提高在所有数据集中都是一致的。在大多数情况下,我们在大道,上海the夫和Ubnormal上的结果将最新的表现提升到了新的水平。
translated by 谷歌翻译
We propose a very fast frame-level model for anomaly detection in video, which learns to detect anomalies by distilling knowledge from multiple highly accurate object-level teacher models. To improve the fidelity of our student, we distill the low-resolution anomaly maps of the teachers by jointly applying standard and adversarial distillation, introducing an adversarial discriminator for each teacher to distinguish between target and generated anomaly maps. We conduct experiments on three benchmarks (Avenue, ShanghaiTech, UCSD Ped2), showing that our method is over 7 times faster than the fastest competing method, and between 28 and 62 times faster than object-centric models, while obtaining comparable results to recent methods. Our evaluation also indicates that our model achieves the best trade-off between speed and accuracy, due to its previously unheard-of speed of 1480 FPS. In addition, we carry out a comprehensive ablation study to justify our architectural design choices.
translated by 谷歌翻译
异常识别高度取决于对象与场景之间的关系,因为相同/不同场景中的不同/相同对象动作可能导致各种程度的正态性和异常。因此,对象场景关系实际上在异常检测中起着至关重要的作用,但在以前的工作中探讨了不足。在本文中,我们提出了一个时空关系学习(STRL)框架来解决视频异常检测任务。首先,考虑到对象的动态特征以及场景区域,我们构建了一个时空自动编码器(STAE),以共同利用代表学习的空间和时间演化模式。为了获得更好的图案提取,在STAE模块中设计了两个解码分支,即通过直接预测下一个帧来捕获空间提示的外观分支,以及一个运动分支,重点是通过光流预测对动态进行建模。然后,为了很好地融合对象场所关系,设计了一个关系学习(RL)模块来通过引入知识图嵌入方法来分析和总结正常关系。在此过程中具体来说,通过共同建模对象/场景特征和优化的对象场所关系图来衡量对象场景关系的合理性。在三个公共数据集上进行了广泛的实验,而对最新方法的优越性能证明了我们方法的有效性。
translated by 谷歌翻译
视频异常检测是现在计算机视觉中的热门研究主题之一,因为异常事件包含大量信息。异常是监控系统中的主要检测目标之一,通常需要实时行动。关于培训的标签数据的可用性(即,没有足够的标记数据进行异常),半监督异常检测方法最近获得了利益。本文介绍了该领域的研究人员,以新的视角,并评论了最近的基于深度学习的半监督视频异常检测方法,基于他们用于异常检测的共同策略。我们的目标是帮助研究人员开发更有效的视频异常检测方法。由于选择右深神经网络的选择对于这项任务的几个部分起着重要作用,首先准备了对DNN的快速比较审查。与以前的调查不同,DNN是从时空特征提取观点审查的,用于视频异常检测。这部分审查可以帮助本领域的研究人员选择合适的网络,以获取其方法的不同部分。此外,基于其检测策略,一些最先进的异常检测方法受到严格调查。审查提供了一种新颖,深入了解现有方法,并导致陈述这些方法的缺点,这可能是未来作品的提示。
translated by 谷歌翻译
检测视频中的异常事件通常被帧为单级分类任务,其中培训视频仅包含正常事件,而测试视频包含正常和异常事件。在这种情况下,异常检测是一个开放式问题。然而,一些研究吸收异常检测行动识别。这是一个封闭式场景,无法测试检测到新的异常类型时系统的能力。为此,我们提出UbnorMal,这是一个由多个虚拟场景组成的新的监督开放式基准,用于视频异常检测。与现有数据集不同,我们首次引入在训练时间的像素级别注释的异常事件,从而实现了用于异常事件检测的完全监督的学习方法。为了保留典型的开放式配方,我们确保在我们的培训和测试集合中包括Disjoint集的异常类型。据我们所知,Ubnormal是第一个视频异常检测基准,以允许一流的开放模型和监督闭合模型之间的公平头部比较,如我们的实验所示。此外,我们提供了实证证据,表明Ubnormal可以提高两个突出数据集,大道和上海学习的最先进的异常检测框架的性能。
translated by 谷歌翻译
在当代社会中,监视异常检测,即在监视视频中发现异常事件,例如犯罪或事故,是一项关键任务。由于异常发生很少发生,大多数培训数据包括没有标记的视频,没有异常事件,这使得任务具有挑战性。大多数现有方法使用自动编码器(AE)学习重建普通视频;然后,他们根据未能重建异常场景的出现来检测异常。但是,由于异常是通过外观和运动来区分的,因此许多先前的方法使用预训练的光流模型明确分开了外观和运动信息,例如。这种明确的分离限制了两种类型的信息之间的相互表示功能。相比之下,我们提出了一个隐式的两路AE(ITAE),其中两个编码器隐含模型外观和运动特征以及一个将它们组合在一起以学习正常视频模式的结构。对于正常场景的复杂分布,我们建议通过归一化流量(NF)的生成模型对ITAE特征的正常密度估计,以学习可拖动的可能性,并使用无法分布的检测来识别异常。 NF模型通过隐式学习的功能通过学习正常性来增强ITAE性能。最后,我们在六个基准测试中演示了ITAE及其特征分布建模的有效性,包括在现实世界中包含各种异常的数据库。
translated by 谷歌翻译
Video anomaly detection (VAD) is a challenging computer vision task with many practical applications. As anomalies are inherently ambiguous, it is essential for users to understand the reasoning behind a system's decision in order to determine if the rationale is sound. In this paper, we propose a simple but highly effective method that pushes the boundaries of VAD accuracy and interpretability using attribute-based representations. Our method represents every object by its velocity and pose. The anomaly scores are computed using a density-based approach. Surprisingly, we find that this simple representation is sufficient to achieve state-of-the-art performance in ShanghaiTech, the largest and most complex VAD dataset. Combining our interpretable attribute-based representations with implicit, deep representation yields state-of-the-art performance with a $99.1\%, 93.3\%$, and $85.9\%$ AUROC on Ped2, Avenue, and ShanghaiTech, respectively. Our method is accurate, interpretable, and easy to implement.
translated by 谷歌翻译
在计算机视觉领域,异常检测最近引起了越来越多的关注,这可能是由于其广泛的应用程序从工业生产线上的产品故障检测到视频监视中即将发生的事件检测到在医疗扫描中发现病变。不管域如何,通常将异常检测构架为一级分类任务,其中仅在正常示例上进行学习。整个成功的异常检测方法的家庭基于学习重建掩盖的正常输入(例如贴片,未来帧等),并将重建误差的幅度作为异常水平的指标。与其他基于重建的方法不同,我们提出了一种新颖的自我监督蒙面的卷积变压器块(SSMCTB),该卷积变压器块(SSMCTB)包括基于重建的功能在核心架构层面上。拟议的自我监督块非常灵活,可以在神经网络的任何层上掩盖信息,并与广泛的神经体系结构兼容。在这项工作中,我们扩展了以前的自我监督预测性卷积专注块(SSPCAB),并具有3D掩盖的卷积层,以及用于频道注意的变压器。此外,我们表明我们的块适用于更广泛的任务,在医学图像和热视频中添加异常检测到基于RGB图像和监视视频的先前考虑的任务。我们通过将SSMCTB的普遍性和灵活性整合到多个最先进的神经模型中,以进行异常检测,从而带来了经验结果,可以证实对五个基准的绩效改进:MVTEC AD,BRATS,BRATS,Avenue,Shanghaitech和Thermal和Thermal和Thermal罕见事件。我们在https://github.com/ristea/ssmctb上发布代码和数据作为开源。
translated by 谷歌翻译
异常检测通常被追求为单级分类问题,其中模型只能从正常训练样本中学习,同时在正常和异常的测试样本上进行评估。在异常检测的成功方法中,一种杰出的方法依赖于预测屏蔽信息(例如修补程序,未来帧等)并利用相对于屏蔽信息的重建误差作为异常分数。与相关方法不同,我们建议将基于重建的功能集成为新颖的自我监督的预测建筑结构块。所提出的自我监督块是通用的,并且可以容易地结合到各种最先进的异常检测方法中。我们的块从带有扩张过滤器的卷积层开始,其中掩盖接收场的中心区域。得到的激活图通过通道注意模块传递。我们的块配备有损失,使得能够最小化接收领域中的遮蔽区域的重建误差。我们通过将其集成到几种最先进的框架中,以便在图像和视频上进行异常检测,提供对MVTEC AD,Avenue和Shanghaitech的经验证据提供了显着改进的经验证据。
translated by 谷歌翻译
Surveillance videos are able to capture a variety of realistic anomalies. In this paper, we propose to learn anomalies by exploiting both normal and anomalous videos. To avoid annotating the anomalous segments or clips in training videos, which is very time consuming, we propose to learn anomaly through the deep multiple instance ranking framework by leveraging weakly labeled training videos, i.e. the training labels (anomalous or normal) are at videolevel instead of clip-level. In our approach, we consider normal and anomalous videos as bags and video segments as instances in multiple instance learning (MIL), and automatically learn a deep anomaly ranking model that predicts high anomaly scores for anomalous video segments. Furthermore, we introduce sparsity and temporal smoothness constraints in the ranking loss function to better localize anomaly during training.We also introduce a new large-scale first of its kind dataset of 128 hours of videos. It consists of 1900 long and untrimmed real-world surveillance videos, with 13 realistic anomalies such as fighting, road accident, burglary, robbery, etc. as well as normal activities. This dataset can be used for two tasks. First, general anomaly detection considering all anomalies in one group and all normal activities in another group. Second, for recognizing each of 13 anomalous activities. Our experimental results show that our MIL method for anomaly detection achieves significant improvement on anomaly detection performance as compared to the state-of-the-art approaches. We provide the results of several recent deep learning baselines on anomalous activity recognition. The low recognition performance of these baselines reveals that our dataset is very challenging and opens more opportunities for future work. The dataset is
translated by 谷歌翻译
We develop a novel framework for single-scene video anomaly localization that allows for human-understandable reasons for the decisions the system makes. We first learn general representations of objects and their motions (using deep networks) and then use these representations to build a high-level, location-dependent model of any particular scene. This model can be used to detect anomalies in new videos of the same scene. Importantly, our approach is explainable - our high-level appearance and motion features can provide human-understandable reasons for why any part of a video is classified as normal or anomalous. We conduct experiments on standard video anomaly detection datasets (Street Scene, CUHK Avenue, ShanghaiTech and UCSD Ped1, Ped2) and show significant improvements over the previous state-of-the-art.
translated by 谷歌翻译
深度学习模型已广泛用于监控视频中的异常检测。典型模型配备了重建普通视频的能力,并评估异常视频的重建错误以指示异常的程度。然而,现有方法遭受了两个缺点。首先,它们只能独立地编码每个身份的运动,而不考虑身份之间的相互作用,这也可以指示异常。其次,他们利用了结构在不同场景下固定的粘合模型,这种配置禁止了对场景的理解。在本文中,我们提出了一个分层时空图卷积神经网络(HSTGCNN)来解决这些问题,HSTGCNN由对应于不同级别的图形表示的多个分支组成。高级图形表示编码人们的轨迹以及多个身份之间的交互,而低级图表表示编码每个人的本地身体姿势。此外,我们建议加权组合在不同场景中更好的多个分支。以这种方式实现了对单级图形表示的改进。实现了对场景的理解并提供异常检测。在低分辨率视频中为在低分辨率视频中编码低分辨率视频中的人员的移动速度和方向编码高级别的图表表示,而在高分辨率视频中将更高的权重分配更高的权重。实验结果表明,建议的HSTGCNN在四个基准数据集(UCSD Spistrian,Shanghaitech,Cuhk Aveance和IITB-Whent)上的当前最先进的模型显着优于最新的最先进模型。
translated by 谷歌翻译
视频异常检测旨在在视频中找到不符合预期行为的事件。普遍的方法主要通过摘要重建或将来的框架预测误差来检测异常。但是,该错误高度依赖于当前摘要的局部环境,并且缺乏对正态性的理解。为了解决这个问题,我们建议不仅通过本地环境来检测异常事件,而且还根据测试事件与培训数据正常的知识之间的一致性。具体而言,我们提出了一个基于上下文恢复和知识检索的新颖的两流框架,这两个流可以相互补充。对于上下文恢复流,我们提出了一个时空的U-NET,可以完全利用运动信息来预测未来的框架。此外,我们提出了一种最大的局部误差机制,以减轻复杂前景对象引起的大恢复错误的问题。对于知识检索流,我们提出了一种改进的可学习区域敏感性散列的散列,该哈希通过暹罗网络和相互差异损失来优化哈希功能。关于正态性的知识是编码和存储在哈希表中的,测试事件与知识表示之间的距离用于揭示异常的概率。最后,我们融合了从两个流的异常得分以检测异常。广泛的实验证明了这两个流的有效性和互补性,因此提出的两流框架在四个数据集上实现了最新的性能。
translated by 谷歌翻译
现代自我监督的学习算法通常强制执行跨视图实例的表示的持久性。虽然非常有效地学习整体图像和视频表示,但这种方法成为在视频中学习时空时间细粒度的特征的子最优,其中场景和情况通过空间和时间演变。在本文中,我们介绍了上下文化的时空对比学习(Const-CL)框架,以利用自我监督有效学习时空时间细粒度的表示。我们首先设计一种基于区域的自我监督的借口任务,该任务要求模型从一个视图中学习将实例表示转换为上下文特征的另一个视图。此外,我们介绍了一个简单的网络设计,有效地调和了整体和本地表示的同时学习过程。我们评估我们对各种下游任务和CONST-CL的学习表现,实现了四个数据集的最先进结果。对于时空行动本地化,Const-CL可以使用AVA-Kinetics验证集的检测到框实现39.4%的地图和30.5%地图。对于对象跟踪,Const-CL在OTB2015上实现了78.1%的精度和55.2%的成功分数。此外,Const-CL分别在视频动作识别数据集,UCF101和HMDB51上实现了94.8%和71.9%的前1个微调精度。我们计划向公众发布我们的代码和模型。
translated by 谷歌翻译
深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译
运动,作为视频中最明显的现象,涉及随时间的变化,对视频表示学习的发展是独一无二的。在本文中,我们提出了问题:特别是对自我监督视频表示学习的运动有多重要。为此,我们撰写了一个二重奏,用于利用对比学习政权的数据增强和特征学习的动作。具体而言,我们介绍了一种以前的对比学习(MCL)方法,其将这种二重奏视为基础。一方面,MCL大写视频中的每个帧的光流量,以在时间上和空间地样本地样本(即,横跨时间的相关帧斑块的序列)作为数据增强。另一方面,MCL进一步将卷积层的梯度图对准来自空间,时间和时空视角的光流程图,以便在特征学习中地进行地面运动信息。在R(2 + 1)D骨架上进行的广泛实验证明了我们MCL的有效性。在UCF101上,在MCL学习的表示上培训的线性分类器实现了81.91%的前1个精度,表现优于6.78%的训练预测。在动力学-400上,MCL在线方案下实现66.62%的前1个精度。代码可在https://github.com/yihengzhang-cv/mcl-motion-focused-contrastive-learning。
translated by 谷歌翻译
Aiming at the problem that the current video anomaly detection cannot fully use the temporal information and ignore the diversity of normal behavior, an anomaly detection method is proposed to integrate the spatiotemporal information of pedestrians. Based on the convolutional autoencoder, the input frame is compressed and restored through the encoder and decoder. Anomaly detection is realized according to the difference between the output frame and the true value. In order to strengthen the characteristic information connection between continuous video frames, the residual temporal shift module and the residual channel attention module are introduced to improve the modeling ability of the network on temporal information and channel information, respectively. Due to the excessive generalization of convolutional neural networks, in the memory enhancement modules, the hopping connections of each codec layer are added to limit autoencoders' ability to represent abnormal frames too vigorously and improve the anomaly detection accuracy of the network. In addition, the objective function is modified by a feature discretization loss, which effectively distinguishes different normal behavior patterns. The experimental results on the CUHK Avenue and ShanghaiTech datasets show that the proposed method is superior to the current mainstream video anomaly detection methods while meeting the real-time requirements.
translated by 谷歌翻译
视频异常检测是计算机视觉社区的一项具有挑战性的任务。大多数基于任务的方法都不考虑独特的空间和时间模式的独立性,而两流结构则缺乏对相关性的探索。在本文中,我们提出了时空记忆增强了两个流动自动编码器框架,该框架可以独立学习外观正常和运动正常,并通过对抗性学习探索相关性。具体而言,我们首先设计了两个代理任务来训练两流结构,以隔离地提取外观和运动特征。然后,将原型特征记录在相应的空间和时间内存池中。最后,编码编码网络通过歧视者进行对抗学习,以探索空间和时间模式之间的相关性。实验结果表明,我们的框架优于最先进的方法,在UCSD PED2和CUHK Avenue数据集上,AUC达到98.1%和89.8%。
translated by 谷歌翻译
无监督的异常检测旨在通过在正常数据上训练来建立模型以有效地检测看不见的异常。尽管以前的基于重建的方法取得了富有成效的进展,但由于两个危急挑战,他们的泛化能力受到限制。首先,训练数据集仅包含正常模式,这限制了模型泛化能力。其次,现有模型学到的特征表示通常缺乏代表性,妨碍了保持正常模式的多样性的能力。在本文中,我们提出了一种称为自适应存储器网络的新方法,具有自我监督的学习(AMSL)来解决这些挑战,并提高无监督异常检测中的泛化能力。基于卷积的AutoEncoder结构,AMSL包含一个自我监督的学习模块,以学习一般正常模式和自适应内存融合模块来学习丰富的特征表示。四个公共多变量时间序列数据集的实验表明,与其他最先进的方法相比,AMSL显着提高了性能。具体而言,在具有9亿个样本的最大帽睡眠阶段检测数据集上,AMSL以精度和F1分数\ TextBF {4} \%+优于第二个最佳基线。除了增强的泛化能力之外,AMSL还针对输入噪声更加强大。
translated by 谷歌翻译