Video anomaly detection (VAD) is a challenging computer vision task with many practical applications. As anomalies are inherently ambiguous, it is essential for users to understand the reasoning behind a system's decision in order to determine if the rationale is sound. In this paper, we propose a simple but highly effective method that pushes the boundaries of VAD accuracy and interpretability using attribute-based representations. Our method represents every object by its velocity and pose. The anomaly scores are computed using a density-based approach. Surprisingly, we find that this simple representation is sufficient to achieve state-of-the-art performance in ShanghaiTech, the largest and most complex VAD dataset. Combining our interpretable attribute-based representations with implicit, deep representation yields state-of-the-art performance with a $99.1\%, 93.3\%$, and $85.9\%$ AUROC on Ped2, Avenue, and ShanghaiTech, respectively. Our method is accurate, interpretable, and easy to implement.
translated by 谷歌翻译
视频异常检测(VAD)是计算机视觉中的重要主题。本文通过最新的自我监督学习进展的激励,通过解决直观而又具有挑战性的借口任务,即时空拼图拼图来解决VAD,该任务是一个多标签的精细粒度分类问题。我们的方法比现有作品具有几个优点:1)时空拼图难题是根据空间和时间维度分离的,分别捕获了高度歧视性的外观和运动特征; 2)完全排列用于提供涵盖各种难度水平的丰富拼图难题,从而使网络能够区分正常事件和异常事件之间的细微时空差异; 3)借口任务以端到端的方式解决,而无需依赖任何预训练的模型。我们的方法优于三个公共基准的最先进的方法。尤其是在上海校园中,其结果优于重建和基于预测的方法。
translated by 谷歌翻译
We develop a novel framework for single-scene video anomaly localization that allows for human-understandable reasons for the decisions the system makes. We first learn general representations of objects and their motions (using deep networks) and then use these representations to build a high-level, location-dependent model of any particular scene. This model can be used to detect anomalies in new videos of the same scene. Importantly, our approach is explainable - our high-level appearance and motion features can provide human-understandable reasons for why any part of a video is classified as normal or anomalous. We conduct experiments on standard video anomaly detection datasets (Street Scene, CUHK Avenue, ShanghaiTech and UCSD Ped1, Ped2) and show significant improvements over the previous state-of-the-art.
translated by 谷歌翻译
最近在文献中引入了用于视频异常检测的自我监督的多任务学习(SSMTL)框架。由于其准确的结果,该方法吸引了许多研究人员的注意。在这项工作中,我们重新审视了自我监督的多任务学习框架,并提出了对原始方法的几个更新。首先,我们研究各种检测方法,例如基于使用光流或背景减法检测高运动区域,因为我们认为当前使用的预训练的Yolov3是次优的,例如从未检测到运动中的对象或来自未知类的对象。其次,我们通过引入多头自发项模块的启发,通过引入多头自我发项模块,使3D卷积骨干链现代化。因此,我们替代地引入了2D和3D卷积视觉变压器(CVT)块。第三,为了进一步改善模型,我们研究了其他自我监督的学习任务,例如通过知识蒸馏来预测细分图,解决拼图拼图,通过知识蒸馏估算身体的姿势,预测掩盖的区域(Inpaining)和对抗性学习具有伪异常。我们进行实验以评估引入变化的性能影响。在找到框架的更有希望的配置后,称为SSMTL ++ V1和SSMTL ++ V2后,我们将初步实验扩展到了更多数据集,表明我们的性能提高在所有数据集中都是一致的。在大多数情况下,我们在大道,上海the夫和Ubnormal上的结果将最新的表现提升到了新的水平。
translated by 谷歌翻译
异常检测通常被追求为单级分类问题,其中模型只能从正常训练样本中学习,同时在正常和异常的测试样本上进行评估。在异常检测的成功方法中,一种杰出的方法依赖于预测屏蔽信息(例如修补程序,未来帧等)并利用相对于屏蔽信息的重建误差作为异常分数。与相关方法不同,我们建议将基于重建的功能集成为新颖的自我监督的预测建筑结构块。所提出的自我监督块是通用的,并且可以容易地结合到各种最先进的异常检测方法中。我们的块从带有扩张过滤器的卷积层开始,其中掩盖接收场的中心区域。得到的激活图通过通道注意模块传递。我们的块配备有损失,使得能够最小化接收领域中的遮蔽区域的重建误差。我们通过将其集成到几种最先进的框架中,以便在图像和视频上进行异常检测,提供对MVTEC AD,Avenue和Shanghaitech的经验证据提供了显着改进的经验证据。
translated by 谷歌翻译
近年来,许多作品已经解决了在视频中发现从未见过的问题。然而,大多数工作都集中在从安全摄像机中检测监视视频中的异常帧。同时,异常检测(AD)在具有异常力学行为的视频中的任务大多被忽视。在这些视频中的异常检测是学术和实际的兴趣,因为它们可以在许多制造,维护和现实生活中自动检测出故障。为了评估检测这种异常的不同方法的潜力,我们评估了两个简单的基线方法:(i)时间汇集图像广告技术。 (ii)用于视频分类的预追溯特征的视频的密度估计。开发此类方法要求新的基准,以允许评估不同可能的方法。我们介绍了物理异常轨迹或运动(幻像)数据集,其中包含六个不同的视频类。每个类都包括正常和异常的视频。课程在呈现的现象,正常的级别变异性和视频中的异常类型中不同。我们还建议甚至更难的基准,应该在高度变量场景中发现异常活动。
translated by 谷歌翻译
本文解决了视频检测问题的视频监视问题。由于异常事件的固有稀有性和异质性,该问题被视为一种正态建模策略,在这种策略中,我们的模型学习以对象为中心的正常模式,而无需在训练过程中看到异常样本。主要贡献在于耦合预处理的对象级动作具有基于余弦的异常估计功能的原型原型,因此通过向基于主流重建的策略引入其他约束来扩展以前的方法。我们的框架利用外观和运动信息来学习对象级别的行为并捕获内存模块中的原型模式。在几个知名数据集上进行的实验证明了我们方法的有效性,因为它在最相关的时空评估指标上优于当前的最新时间。
translated by 谷歌翻译
异常检测方法识别偏离数据集的正常行为的样本。它通常用于训练集,其中包含来自多个标记类或单个未标记的类的普通数据。当前方法面对培训数据时争取多个类但没有标签。在这项工作中,我们首先发现自我监督的图像聚类方法学习的分类器为未标记的多级数据集上的异常检测提供了强大的基线。也许令人惊讶的是,我们发现初始化具有预先训练功能的聚类方法并不能改善其自我监督的对应物。这是由于灾难性遗忘的现象。相反,我们建议了两级方法。我们使用自我监督方法群集图像并为每个图像获取群集标签。我们使用群集标签作为“伪监督”,用于分销(OOD)方法。具体而言,我们通过群集标签对图像进行分类的任务进行预训练功能。我们提供了我们对方法的广泛分析,并展示了我们两级方法的必要性。我们评估符合最先进的自我监督和预用方法,并表现出卓越的性能。
translated by 谷歌翻译
在当代社会中,监视异常检测,即在监视视频中发现异常事件,例如犯罪或事故,是一项关键任务。由于异常发生很少发生,大多数培训数据包括没有标记的视频,没有异常事件,这使得任务具有挑战性。大多数现有方法使用自动编码器(AE)学习重建普通视频;然后,他们根据未能重建异常场景的出现来检测异常。但是,由于异常是通过外观和运动来区分的,因此许多先前的方法使用预训练的光流模型明确分开了外观和运动信息,例如。这种明确的分离限制了两种类型的信息之间的相互表示功能。相比之下,我们提出了一个隐式的两路AE(ITAE),其中两个编码器隐含模型外观和运动特征以及一个将它们组合在一起以学习正常视频模式的结构。对于正常场景的复杂分布,我们建议通过归一化流量(NF)的生成模型对ITAE特征的正常密度估计,以学习可拖动的可能性,并使用无法分布的检测来识别异常。 NF模型通过隐式学习的功能通过学习正常性来增强ITAE性能。最后,我们在六个基准测试中演示了ITAE及其特征分布建模的有效性,包括在现实世界中包含各种异常的数据库。
translated by 谷歌翻译
异常检测方法努力以语义方式发现与规范不同的模式。这个目标是模棱两可的,因为数据点与规范不同的属性不同,例如年龄,种族或性别,可能被某些操作员认为是异常的,而其他操作员可能认为这种属性无关紧要。从先前的研究中断,我们提出了一种新的异常检测方法,该方法使操作员可以将属性排除在被认为与异常检测相关的情况下。然后,我们的方法学习了不包含有关滋扰属性的信息的表示形式。使用基于密度的方法进行异常评分。重要的是,我们的方法不需要指定与检测异常相关的属性,这在异常检测中通常是不可能的,而是只能忽略的属性。提出了一项实证研究,以验证我们方法的有效性。
translated by 谷歌翻译
在计算机视觉领域,异常检测最近引起了越来越多的关注,这可能是由于其广泛的应用程序从工业生产线上的产品故障检测到视频监视中即将发生的事件检测到在医疗扫描中发现病变。不管域如何,通常将异常检测构架为一级分类任务,其中仅在正常示例上进行学习。整个成功的异常检测方法的家庭基于学习重建掩盖的正常输入(例如贴片,未来帧等),并将重建误差的幅度作为异常水平的指标。与其他基于重建的方法不同,我们提出了一种新颖的自我监督蒙面的卷积变压器块(SSMCTB),该卷积变压器块(SSMCTB)包括基于重建的功能在核心架构层面上。拟议的自我监督块非常灵活,可以在神经网络的任何层上掩盖信息,并与广泛的神经体系结构兼容。在这项工作中,我们扩展了以前的自我监督预测性卷积专注块(SSPCAB),并具有3D掩盖的卷积层,以及用于频道注意的变压器。此外,我们表明我们的块适用于更广泛的任务,在医学图像和热视频中添加异常检测到基于RGB图像和监视视频的先前考虑的任务。我们通过将SSMCTB的普遍性和灵活性整合到多个最先进的神经模型中,以进行异常检测,从而带来了经验结果,可以证实对五个基准的绩效改进:MVTEC AD,BRATS,BRATS,Avenue,Shanghaitech和Thermal和Thermal和Thermal罕见事件。我们在https://github.com/ristea/ssmctb上发布代码和数据作为开源。
translated by 谷歌翻译
视频异常检测旨在在视频中找到不符合预期行为的事件。普遍的方法主要通过摘要重建或将来的框架预测误差来检测异常。但是,该错误高度依赖于当前摘要的局部环境,并且缺乏对正态性的理解。为了解决这个问题,我们建议不仅通过本地环境来检测异常事件,而且还根据测试事件与培训数据正常的知识之间的一致性。具体而言,我们提出了一个基于上下文恢复和知识检索的新颖的两流框架,这两个流可以相互补充。对于上下文恢复流,我们提出了一个时空的U-NET,可以完全利用运动信息来预测未来的框架。此外,我们提出了一种最大的局部误差机制,以减轻复杂前景对象引起的大恢复错误的问题。对于知识检索流,我们提出了一种改进的可学习区域敏感性散列的散列,该哈希通过暹罗网络和相互差异损失来优化哈希功能。关于正态性的知识是编码和存储在哈希表中的,测试事件与知识表示之间的距离用于揭示异常的概率。最后,我们融合了从两个流的异常得分以检测异常。广泛的实验证明了这两个流的有效性和互补性,因此提出的两流框架在四个数据集上实现了最新的性能。
translated by 谷歌翻译
视频异常检测是视觉中的核心问题。正确检测和识别视频数据中行人中的异常行为将使安全至关重要的应用,例如监视,活动监测和人类机器人的互动。在本文中,我们建议利用无监督的行人异常事件检测的轨迹定位和预测。与以前的基于重建的方法不同,我们提出的框架依赖于正常和异常行人轨迹的预测误差来在空间和时间上检测异常。我们介绍了有关不同时间尺度的现实基准数据集的实验结果,并表明我们提出的基于轨迹预言的异常检测管道在识别视频中行人的异常活动方面有效有效。代码将在https://github.com/akanuasiegbu/leveraging-trajectory-prediction-for-pedestrian-video-anomaly-detection上提供。
translated by 谷歌翻译
这项工作的目的是检测并自动生成视频中异常事件的高级解释。了解异常事件的原因至关重要,因为所需的响应取决于其性质和严重程度。最近的作品通常使用对象或操作分类器来检测和提供异常事件的标签。然而,这将检测系统限制为有限的已知类别,并防止到未知物体或行为的概括。在这里,我们展示了如何在不使用对象或操作分类器的情况下稳健地检测异组织,但仍然恢复事件背后的高级原因。我们提出以下贡献:(1)一种使用显着性图来解除对象和动作分类器的异常事件解释的方法,(2)显示如何使用新的神经架构来学习视频的离散表示来提高显着图的质量通过预测未来帧和(3)将最先进的异常解释方法击败60 \%在公共基准X-MAN数据集的子集上。
translated by 谷歌翻译
视频异常检测(VAD)主要是指识别在训练集中没有发生的异常事件,其中只有正常样本可用。现有的作品通常将VAD制定为重建或预测问题。然而,这些方法的适应性和可扩展性受到限制。在本文中,我们提出了一种新颖的基于距离的VAD方法,可以有效和灵活地利用所有可用的正常数据。在我们的方法中,测试样本和正常样本之间的距离越小,测试样本正常的概率越高。具体地,我们建议将位置敏感的散列(LSH)使用以预先将其相似度超过特定阈值的样本进行地图。以这种方式,近邻搜索的复杂性显着减少。为了使语义上类似的样本更接近和样本不相似,我们提出了一种新颖的学习版LSH,将LSH嵌入神经网络,并优化具有对比学习策略的哈希功能。该方法对数据不平衡具有鲁棒性,并且可以灵活地处理正常数据的大型类内变化。此外,它具有良好的可扩展性能力。广泛的实验证明了我们的方法的优势,这实现了Vad基准的新型结果。
translated by 谷歌翻译
在监控视频中的异常检测是挑战,对确保公共安全有挑战性。不同于基于像素的异常检测方法,基于姿势的方法利用高结构化的骨架数据,这降低了计算负担,并避免了背景噪声的负面影响。然而,与基于像素的方法不同,这可以直接利用显式运动特征,例如光学流,基于姿势的方法缺乏替代动态表示。在本文中,提出了一种新的运动嵌入器(ME)以提供从概率的角度来提供姿态运动表示。此外,为自我监控姿势序列重建部署了一种新型任务特定的空间 - 时间变压器(STT)。然后将这两个模块集成到统一规律学习的统一框架中,该框架被称为运动先前规律学习者(MOPLL)。 MOPRL在几个具有挑战性的数据集中实现了4.7%AUC的平均改善,实现了最先进的性能。广泛的实验验证每个提出的模块的多功能性。
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
In recent years, we have seen a significant interest in data-driven deep learning approaches for video anomaly detection, where an algorithm must determine if specific frames of a video contain abnormal behaviors. However, video anomaly detection is particularly context-specific, and the availability of representative datasets heavily limits real-world accuracy. Additionally, the metrics currently reported by most state-of-the-art methods often do not reflect how well the model will perform in real-world scenarios. In this article, we present the Charlotte Anomaly Dataset (CHAD). CHAD is a high-resolution, multi-camera anomaly dataset in a commercial parking lot setting. In addition to frame-level anomaly labels, CHAD is the first anomaly dataset to include bounding box, identity, and pose annotations for each actor. This is especially beneficial for skeleton-based anomaly detection, which is useful for its lower computational demand in real-world settings. CHAD is also the first anomaly dataset to contain multiple views of the same scene. With four camera views and over 1.15 million frames, CHAD is the largest fully annotated anomaly detection dataset including person annotations, collected from continuous video streams from stationary cameras for smart video surveillance applications. To demonstrate the efficacy of CHAD for training and evaluation, we benchmark two state-of-the-art skeleton-based anomaly detection algorithms on CHAD and provide comprehensive analysis, including both quantitative results and qualitative examination.
translated by 谷歌翻译
检测视频中的异常事件通常被帧为单级分类任务,其中培训视频仅包含正常事件,而测试视频包含正常和异常事件。在这种情况下,异常检测是一个开放式问题。然而,一些研究吸收异常检测行动识别。这是一个封闭式场景,无法测试检测到新的异常类型时系统的能力。为此,我们提出UbnorMal,这是一个由多个虚拟场景组成的新的监督开放式基准,用于视频异常检测。与现有数据集不同,我们首次引入在训练时间的像素级别注释的异常事件,从而实现了用于异常事件检测的完全监督的学习方法。为了保留典型的开放式配方,我们确保在我们的培训和测试集合中包括Disjoint集的异常类型。据我们所知,Ubnormal是第一个视频异常检测基准,以允许一流的开放模型和监督闭合模型之间的公平头部比较,如我们的实验所示。此外,我们提供了实证证据,表明Ubnormal可以提高两个突出数据集,大道和上海学习的最先进的异常检测框架的性能。
translated by 谷歌翻译
异常识别高度取决于对象与场景之间的关系,因为相同/不同场景中的不同/相同对象动作可能导致各种程度的正态性和异常。因此,对象场景关系实际上在异常检测中起着至关重要的作用,但在以前的工作中探讨了不足。在本文中,我们提出了一个时空关系学习(STRL)框架来解决视频异常检测任务。首先,考虑到对象的动态特征以及场景区域,我们构建了一个时空自动编码器(STAE),以共同利用代表学习的空间和时间演化模式。为了获得更好的图案提取,在STAE模块中设计了两个解码分支,即通过直接预测下一个帧来捕获空间提示的外观分支,以及一个运动分支,重点是通过光流预测对动态进行建模。然后,为了很好地融合对象场所关系,设计了一个关系学习(RL)模块来通过引入知识图嵌入方法来分析和总结正常关系。在此过程中具体来说,通过共同建模对象/场景特征和优化的对象场所关系图来衡量对象场景关系的合理性。在三个公共数据集上进行了广泛的实验,而对最新方法的优越性能证明了我们方法的有效性。
translated by 谷歌翻译