We develop a novel framework for single-scene video anomaly localization that allows for human-understandable reasons for the decisions the system makes. We first learn general representations of objects and their motions (using deep networks) and then use these representations to build a high-level, location-dependent model of any particular scene. This model can be used to detect anomalies in new videos of the same scene. Importantly, our approach is explainable - our high-level appearance and motion features can provide human-understandable reasons for why any part of a video is classified as normal or anomalous. We conduct experiments on standard video anomaly detection datasets (Street Scene, CUHK Avenue, ShanghaiTech and UCSD Ped1, Ped2) and show significant improvements over the previous state-of-the-art.
translated by 谷歌翻译
最近在文献中引入了用于视频异常检测的自我监督的多任务学习(SSMTL)框架。由于其准确的结果,该方法吸引了许多研究人员的注意。在这项工作中,我们重新审视了自我监督的多任务学习框架,并提出了对原始方法的几个更新。首先,我们研究各种检测方法,例如基于使用光流或背景减法检测高运动区域,因为我们认为当前使用的预训练的Yolov3是次优的,例如从未检测到运动中的对象或来自未知类的对象。其次,我们通过引入多头自发项模块的启发,通过引入多头自我发项模块,使3D卷积骨干链现代化。因此,我们替代地引入了2D和3D卷积视觉变压器(CVT)块。第三,为了进一步改善模型,我们研究了其他自我监督的学习任务,例如通过知识蒸馏来预测细分图,解决拼图拼图,通过知识蒸馏估算身体的姿势,预测掩盖的区域(Inpaining)和对抗性学习具有伪异常。我们进行实验以评估引入变化的性能影响。在找到框架的更有希望的配置后,称为SSMTL ++ V1和SSMTL ++ V2后,我们将初步实验扩展到了更多数据集,表明我们的性能提高在所有数据集中都是一致的。在大多数情况下,我们在大道,上海the夫和Ubnormal上的结果将最新的表现提升到了新的水平。
translated by 谷歌翻译
异常识别高度取决于对象与场景之间的关系,因为相同/不同场景中的不同/相同对象动作可能导致各种程度的正态性和异常。因此,对象场景关系实际上在异常检测中起着至关重要的作用,但在以前的工作中探讨了不足。在本文中,我们提出了一个时空关系学习(STRL)框架来解决视频异常检测任务。首先,考虑到对象的动态特征以及场景区域,我们构建了一个时空自动编码器(STAE),以共同利用代表学习的空间和时间演化模式。为了获得更好的图案提取,在STAE模块中设计了两个解码分支,即通过直接预测下一个帧来捕获空间提示的外观分支,以及一个运动分支,重点是通过光流预测对动态进行建模。然后,为了很好地融合对象场所关系,设计了一个关系学习(RL)模块来通过引入知识图嵌入方法来分析和总结正常关系。在此过程中具体来说,通过共同建模对象/场景特征和优化的对象场所关系图来衡量对象场景关系的合理性。在三个公共数据集上进行了广泛的实验,而对最新方法的优越性能证明了我们方法的有效性。
translated by 谷歌翻译
在当代社会中,监视异常检测,即在监视视频中发现异常事件,例如犯罪或事故,是一项关键任务。由于异常发生很少发生,大多数培训数据包括没有标记的视频,没有异常事件,这使得任务具有挑战性。大多数现有方法使用自动编码器(AE)学习重建普通视频;然后,他们根据未能重建异常场景的出现来检测异常。但是,由于异常是通过外观和运动来区分的,因此许多先前的方法使用预训练的光流模型明确分开了外观和运动信息,例如。这种明确的分离限制了两种类型的信息之间的相互表示功能。相比之下,我们提出了一个隐式的两路AE(ITAE),其中两个编码器隐含模型外观和运动特征以及一个将它们组合在一起以学习正常视频模式的结构。对于正常场景的复杂分布,我们建议通过归一化流量(NF)的生成模型对ITAE特征的正常密度估计,以学习可拖动的可能性,并使用无法分布的检测来识别异常。 NF模型通过隐式学习的功能通过学习正常性来增强ITAE性能。最后,我们在六个基准测试中演示了ITAE及其特征分布建模的有效性,包括在现实世界中包含各种异常的数据库。
translated by 谷歌翻译
Surveillance videos are able to capture a variety of realistic anomalies. In this paper, we propose to learn anomalies by exploiting both normal and anomalous videos. To avoid annotating the anomalous segments or clips in training videos, which is very time consuming, we propose to learn anomaly through the deep multiple instance ranking framework by leveraging weakly labeled training videos, i.e. the training labels (anomalous or normal) are at videolevel instead of clip-level. In our approach, we consider normal and anomalous videos as bags and video segments as instances in multiple instance learning (MIL), and automatically learn a deep anomaly ranking model that predicts high anomaly scores for anomalous video segments. Furthermore, we introduce sparsity and temporal smoothness constraints in the ranking loss function to better localize anomaly during training.We also introduce a new large-scale first of its kind dataset of 128 hours of videos. It consists of 1900 long and untrimmed real-world surveillance videos, with 13 realistic anomalies such as fighting, road accident, burglary, robbery, etc. as well as normal activities. This dataset can be used for two tasks. First, general anomaly detection considering all anomalies in one group and all normal activities in another group. Second, for recognizing each of 13 anomalous activities. Our experimental results show that our MIL method for anomaly detection achieves significant improvement on anomaly detection performance as compared to the state-of-the-art approaches. We provide the results of several recent deep learning baselines on anomalous activity recognition. The low recognition performance of these baselines reveals that our dataset is very challenging and opens more opportunities for future work. The dataset is
translated by 谷歌翻译
这项工作的目的是检测并自动生成视频中异常事件的高级解释。了解异常事件的原因至关重要,因为所需的响应取决于其性质和严重程度。最近的作品通常使用对象或操作分类器来检测和提供异常事件的标签。然而,这将检测系统限制为有限的已知类别,并防止到未知物体或行为的概括。在这里,我们展示了如何在不使用对象或操作分类器的情况下稳健地检测异组织,但仍然恢复事件背后的高级原因。我们提出以下贡献:(1)一种使用显着性图来解除对象和动作分类器的异常事件解释的方法,(2)显示如何使用新的神经架构来学习视频的离散表示来提高显着图的质量通过预测未来帧和(3)将最先进的异常解释方法击败60 \%在公共基准X-MAN数据集的子集上。
translated by 谷歌翻译
视频异常检测是现在计算机视觉中的热门研究主题之一,因为异常事件包含大量信息。异常是监控系统中的主要检测目标之一,通常需要实时行动。关于培训的标签数据的可用性(即,没有足够的标记数据进行异常),半监督异常检测方法最近获得了利益。本文介绍了该领域的研究人员,以新的视角,并评论了最近的基于深度学习的半监督视频异常检测方法,基于他们用于异常检测的共同策略。我们的目标是帮助研究人员开发更有效的视频异常检测方法。由于选择右深神经网络的选择对于这项任务的几个部分起着重要作用,首先准备了对DNN的快速比较审查。与以前的调查不同,DNN是从时空特征提取观点审查的,用于视频异常检测。这部分审查可以帮助本领域的研究人员选择合适的网络,以获取其方法的不同部分。此外,基于其检测策略,一些最先进的异常检测方法受到严格调查。审查提供了一种新颖,深入了解现有方法,并导致陈述这些方法的缺点,这可能是未来作品的提示。
translated by 谷歌翻译
视频异常检测是视觉中的核心问题。正确检测和识别视频数据中行人中的异常行为将使安全至关重要的应用,例如监视,活动监测和人类机器人的互动。在本文中,我们建议利用无监督的行人异常事件检测的轨迹定位和预测。与以前的基于重建的方法不同,我们提出的框架依赖于正常和异常行人轨迹的预测误差来在空间和时间上检测异常。我们介绍了有关不同时间尺度的现实基准数据集的实验结果,并表明我们提出的基于轨迹预言的异常检测管道在识别视频中行人的异常活动方面有效有效。代码将在https://github.com/akanuasiegbu/leveraging-trajectory-prediction-for-pedestrian-video-anomaly-detection上提供。
translated by 谷歌翻译
检测视频中的异常事件通常被帧为单级分类任务,其中培训视频仅包含正常事件,而测试视频包含正常和异常事件。在这种情况下,异常检测是一个开放式问题。然而,一些研究吸收异常检测行动识别。这是一个封闭式场景,无法测试检测到新的异常类型时系统的能力。为此,我们提出UbnorMal,这是一个由多个虚拟场景组成的新的监督开放式基准,用于视频异常检测。与现有数据集不同,我们首次引入在训练时间的像素级别注释的异常事件,从而实现了用于异常事件检测的完全监督的学习方法。为了保留典型的开放式配方,我们确保在我们的培训和测试集合中包括Disjoint集的异常类型。据我们所知,Ubnormal是第一个视频异常检测基准,以允许一流的开放模型和监督闭合模型之间的公平头部比较,如我们的实验所示。此外,我们提供了实证证据,表明Ubnormal可以提高两个突出数据集,大道和上海学习的最先进的异常检测框架的性能。
translated by 谷歌翻译
Video anomaly detection (VAD) is a challenging computer vision task with many practical applications. As anomalies are inherently ambiguous, it is essential for users to understand the reasoning behind a system's decision in order to determine if the rationale is sound. In this paper, we propose a simple but highly effective method that pushes the boundaries of VAD accuracy and interpretability using attribute-based representations. Our method represents every object by its velocity and pose. The anomaly scores are computed using a density-based approach. Surprisingly, we find that this simple representation is sufficient to achieve state-of-the-art performance in ShanghaiTech, the largest and most complex VAD dataset. Combining our interpretable attribute-based representations with implicit, deep representation yields state-of-the-art performance with a $99.1\%, 93.3\%$, and $85.9\%$ AUROC on Ped2, Avenue, and ShanghaiTech, respectively. Our method is accurate, interpretable, and easy to implement.
translated by 谷歌翻译
在计算机视觉领域,异常检测最近引起了越来越多的关注,这可能是由于其广泛的应用程序从工业生产线上的产品故障检测到视频监视中即将发生的事件检测到在医疗扫描中发现病变。不管域如何,通常将异常检测构架为一级分类任务,其中仅在正常示例上进行学习。整个成功的异常检测方法的家庭基于学习重建掩盖的正常输入(例如贴片,未来帧等),并将重建误差的幅度作为异常水平的指标。与其他基于重建的方法不同,我们提出了一种新颖的自我监督蒙面的卷积变压器块(SSMCTB),该卷积变压器块(SSMCTB)包括基于重建的功能在核心架构层面上。拟议的自我监督块非常灵活,可以在神经网络的任何层上掩盖信息,并与广泛的神经体系结构兼容。在这项工作中,我们扩展了以前的自我监督预测性卷积专注块(SSPCAB),并具有3D掩盖的卷积层,以及用于频道注意的变压器。此外,我们表明我们的块适用于更广泛的任务,在医学图像和热视频中添加异常检测到基于RGB图像和监视视频的先前考虑的任务。我们通过将SSMCTB的普遍性和灵活性整合到多个最先进的神经模型中,以进行异常检测,从而带来了经验结果,可以证实对五个基准的绩效改进:MVTEC AD,BRATS,BRATS,Avenue,Shanghaitech和Thermal和Thermal和Thermal罕见事件。我们在https://github.com/ristea/ssmctb上发布代码和数据作为开源。
translated by 谷歌翻译
异常检测通常被追求为单级分类问题,其中模型只能从正常训练样本中学习,同时在正常和异常的测试样本上进行评估。在异常检测的成功方法中,一种杰出的方法依赖于预测屏蔽信息(例如修补程序,未来帧等)并利用相对于屏蔽信息的重建误差作为异常分数。与相关方法不同,我们建议将基于重建的功能集成为新颖的自我监督的预测建筑结构块。所提出的自我监督块是通用的,并且可以容易地结合到各种最先进的异常检测方法中。我们的块从带有扩张过滤器的卷积层开始,其中掩盖接收场的中心区域。得到的激活图通过通道注意模块传递。我们的块配备有损失,使得能够最小化接收领域中的遮蔽区域的重建误差。我们通过将其集成到几种最先进的框架中,以便在图像和视频上进行异常检测,提供对MVTEC AD,Avenue和Shanghaitech的经验证据提供了显着改进的经验证据。
translated by 谷歌翻译
视频异常检测(VAD)是计算机视觉中的重要主题。本文通过最新的自我监督学习进展的激励,通过解决直观而又具有挑战性的借口任务,即时空拼图拼图来解决VAD,该任务是一个多标签的精细粒度分类问题。我们的方法比现有作品具有几个优点:1)时空拼图难题是根据空间和时间维度分离的,分别捕获了高度歧视性的外观和运动特征; 2)完全排列用于提供涵盖各种难度水平的丰富拼图难题,从而使网络能够区分正常事件和异常事件之间的细微时空差异; 3)借口任务以端到端的方式解决,而无需依赖任何预训练的模型。我们的方法优于三个公共基准的最先进的方法。尤其是在上海校园中,其结果优于重建和基于预测的方法。
translated by 谷歌翻译
本文解决了视频检测问题的视频监视问题。由于异常事件的固有稀有性和异质性,该问题被视为一种正态建模策略,在这种策略中,我们的模型学习以对象为中心的正常模式,而无需在训练过程中看到异常样本。主要贡献在于耦合预处理的对象级动作具有基于余弦的异常估计功能的原型原型,因此通过向基于主流重建的策略引入其他约束来扩展以前的方法。我们的框架利用外观和运动信息来学习对象级别的行为并捕获内存模块中的原型模式。在几个知名数据集上进行的实验证明了我们方法的有效性,因为它在最相关的时空评估指标上优于当前的最新时间。
translated by 谷歌翻译
在由车辆安装的仪表板摄像机捕获的视频中检测危险交通代理(仪表板)对于促进在复杂环境中的安全导航至关重要。与事故相关的视频只是驾驶视频大数据的一小部分,并且瞬态前的事故流程具有高度动态和复杂性。此外,风险和非危险交通代理的外观可能相似。这些使驾驶视频中的风险对象本地化特别具有挑战性。为此,本文提出了一个注意力引导的多式功能融合网络(AM-NET),以将仪表板视频的危险交通代理本地化。两个封闭式复发单元(GRU)网络使用对象边界框和从连续视频帧中提取的光流功能来捕获时空提示,以区分危险交通代理。加上GRUS的注意力模块学会了与事故相关的交通代理。融合了两个功能流,AM-NET预测了视频中交通代理的风险评分。在支持这项研究的过程中,本文还引入了一个名为“风险对象本地化”(ROL)的基准数据集。该数据集包含带有事故,对象和场景级属性的空间,时间和分类注释。拟议的AM-NET在ROL数据集上实现了85.73%的AUC的有希望的性能。同时,AM-NET在DOTA数据集上优于视频异常检测的当前最新视频异常检测。一项彻底的消融研究进一步揭示了AM-NET通过评估其不同组成部分的贡献的优点。
translated by 谷歌翻译
视频异常检测旨在在视频中找到不符合预期行为的事件。普遍的方法主要通过摘要重建或将来的框架预测误差来检测异常。但是,该错误高度依赖于当前摘要的局部环境,并且缺乏对正态性的理解。为了解决这个问题,我们建议不仅通过本地环境来检测异常事件,而且还根据测试事件与培训数据正常的知识之间的一致性。具体而言,我们提出了一个基于上下文恢复和知识检索的新颖的两流框架,这两个流可以相互补充。对于上下文恢复流,我们提出了一个时空的U-NET,可以完全利用运动信息来预测未来的框架。此外,我们提出了一种最大的局部误差机制,以减轻复杂前景对象引起的大恢复错误的问题。对于知识检索流,我们提出了一种改进的可学习区域敏感性散列的散列,该哈希通过暹罗网络和相互差异损失来优化哈希功能。关于正态性的知识是编码和存储在哈希表中的,测试事件与知识表示之间的距离用于揭示异常的概率。最后,我们融合了从两个流的异常得分以检测异常。广泛的实验证明了这两个流的有效性和互补性,因此提出的两流框架在四个数据集上实现了最新的性能。
translated by 谷歌翻译
The existing methods for video anomaly detection mostly utilize videos containing identifiable facial and appearance-based features. The use of videos with identifiable faces raises privacy concerns, especially when used in a hospital or community-based setting. Appearance-based features can also be sensitive to pixel-based noise, straining the anomaly detection methods to model the changes in the background and making it difficult to focus on the actions of humans in the foreground. Structural information in the form of skeletons describing the human motion in the videos is privacy-protecting and can overcome some of the problems posed by appearance-based features. In this paper, we present a survey of privacy-protecting deep learning anomaly detection methods using skeletons extracted from videos. We present a novel taxonomy of algorithms based on the various learning approaches. We conclude that skeleton-based approaches for anomaly detection can be a plausible privacy-protecting alternative for video anomaly detection. Lastly, we identify major open research questions and provide guidelines to address them.
translated by 谷歌翻译
In recent years, we have seen a significant interest in data-driven deep learning approaches for video anomaly detection, where an algorithm must determine if specific frames of a video contain abnormal behaviors. However, video anomaly detection is particularly context-specific, and the availability of representative datasets heavily limits real-world accuracy. Additionally, the metrics currently reported by most state-of-the-art methods often do not reflect how well the model will perform in real-world scenarios. In this article, we present the Charlotte Anomaly Dataset (CHAD). CHAD is a high-resolution, multi-camera anomaly dataset in a commercial parking lot setting. In addition to frame-level anomaly labels, CHAD is the first anomaly dataset to include bounding box, identity, and pose annotations for each actor. This is especially beneficial for skeleton-based anomaly detection, which is useful for its lower computational demand in real-world settings. CHAD is also the first anomaly dataset to contain multiple views of the same scene. With four camera views and over 1.15 million frames, CHAD is the largest fully annotated anomaly detection dataset including person annotations, collected from continuous video streams from stationary cameras for smart video surveillance applications. To demonstrate the efficacy of CHAD for training and evaluation, we benchmark two state-of-the-art skeleton-based anomaly detection algorithms on CHAD and provide comprehensive analysis, including both quantitative results and qualitative examination.
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
深度学习模型已广泛用于监控视频中的异常检测。典型模型配备了重建普通视频的能力,并评估异常视频的重建错误以指示异常的程度。然而,现有方法遭受了两个缺点。首先,它们只能独立地编码每个身份的运动,而不考虑身份之间的相互作用,这也可以指示异常。其次,他们利用了结构在不同场景下固定的粘合模型,这种配置禁止了对场景的理解。在本文中,我们提出了一个分层时空图卷积神经网络(HSTGCNN)来解决这些问题,HSTGCNN由对应于不同级别的图形表示的多个分支组成。高级图形表示编码人们的轨迹以及多个身份之间的交互,而低级图表表示编码每个人的本地身体姿势。此外,我们建议加权组合在不同场景中更好的多个分支。以这种方式实现了对单级图形表示的改进。实现了对场景的理解并提供异常检测。在低分辨率视频中为在低分辨率视频中编码低分辨率视频中的人员的移动速度和方向编码高级别的图表表示,而在高分辨率视频中将更高的权重分配更高的权重。实验结果表明,建议的HSTGCNN在四个基准数据集(UCSD Spistrian,Shanghaitech,Cuhk Aveance和IITB-Whent)上的当前最先进的模型显着优于最新的最先进模型。
translated by 谷歌翻译