鲁棒性是机器学习(ML)分类器的基本支柱,实质上确定了它们的可靠性。因此,评估分类器鲁棒性的方法至关重要。在这项工作中,我们解决了评估腐败鲁棒性的挑战,该方式允许在给定数据集上可比性和解释性。我们提出了一种测试数据增强方法,该方法使用稳健性距离$ \ epsilon $从数据集中衍生的最小类分隔距离。由此产生的MSCR(平均统计损坏鲁棒性)允许对不同分类器在腐败鲁棒性方面进行特定于数据集的比较。 MSCR值是可以解释的,因为它代表了由于统计损坏而避免了准确性损失的分类器。在2D和图像数据上,我们表明度量标准反映了分类器鲁棒性的不同级别。此外,我们通过训练和测试不同级别的噪声测试分类器观察到分类器中意外的最佳精度。虽然研究人员经常在训练健壮的模型时经常报道准确性的重大权衡,但我们加强了这样一种观点,即准确性和腐败鲁棒性之间的权衡并不是固有的。我们的结果表明,通过简单数据增强,稳健性训练已经可以稍微提高准确性。
translated by 谷歌翻译
对共同腐败的稳健性的文献表明对逆势培训是否可以提高这种环境的性能,没有达成共识。 First, we show that, when used with an appropriately selected perturbation radius, $\ell_p$ adversarial training can serve as a strong baseline against common corruptions improving both accuracy and calibration.然后,我们解释了为什么对抗性训练比具有简单高斯噪声的数据增强更好地表现,这被观察到是对共同腐败的有意义的基线。与此相关,我们确定了高斯增强过度适用于用于培训的特定标准偏差的$ \ sigma $ -oviting现象,这对培训具有显着不利影响的普通腐败精度。我们讨论如何缓解这一问题,然后如何通过学习的感知图像贴片相似度引入对抗性训练的有效放松来进一步增强$ \ ell_p $普发的培训。通过对CiFar-10和Imagenet-100的实验,我们表明我们的方法不仅改善了$ \ ell_p $普发的培训基线,而且还有累积的收益与Augmix,Deepaulment,Ant和Sin等数据增强方法,导致普通腐败的最先进的表现。我们的实验代码在HTTPS://github.com/tml-epfl/adv-training - 窗子上公开使用。
translated by 谷歌翻译
不变性于广泛的图像损坏,例如翘曲,噪声或颜色移位,是在计算机视觉中建立强大模型的一个重要方面。最近,已经提出了几种新的数据增强,从而显着提高了Imagenet-C的性能,这是这种腐败的基准。但是,对数据增强和测试时间损坏之间的关系仍然缺乏基本的理解。为此,我们开发了图像变换的一个特征空间,然后在增强和损坏之间使用该空间中的新措施,称为最小示例距离,以演示相似性和性能之间的强相关性。然后,当测试时间损坏被对来自Imagenet-C中的测试时间损坏被采样时,我们调查最近的数据增强并观察腐败鲁棒性的重大退化。我们的结果表明,通过对感知同类增强的培训来提高测试错误,数据增强可能不会超出现有的基准。我们希望我们的结果和工具将允许更强大的进展,以提高对图像损坏的稳健性。我们在https://github.com/facebookresearch/augmentation - 窗子提供代码。
translated by 谷歌翻译
现代神经网络Excel在图像分类中,但它们仍然容易受到常见图像损坏,如模糊,斑点噪音或雾。最近的方法关注这个问题,例如Augmix和Deepaulment,引入了在预期运行的防御,以期望图像损坏分布。相比之下,$ \ ell_p $ -norm界限扰动的文献侧重于针对最坏情况损坏的防御。在这项工作中,我们通过提出防范内人来调和两种方法,这是一种优化图像到图像模型的参数来产生对外损坏的增强图像的技术。我们理论上激发了我们的方法,并为其理想化版本的一致性以及大纲领提供了足够的条件。我们的分类机器在预期对CiFar-10-C进行的常见图像腐败基准上提高了最先进的,并改善了CIFAR-10和ImageNet上的$ \ ell_p $ -norm有界扰动的最坏情况性能。
translated by 谷歌翻译
尽管对图像分类任务的表现令人印象深刻,但深网络仍然难以概括其数据的许多常见损坏。为解决此漏洞,事先作品主要专注于提高其培训管道的复杂性,以多样性的名义结合多种方法。然而,在这项工作中,我们逐步回来并遵循原则的方法来实现共同腐败的稳健性。我们提出了一个普遍的数据增强方案,包括最大熵图像变换的简单系列。我们展示了Prime优于现有技术的腐败鲁棒性,而其简单和即插即用性质使其能够与其他方法结合以进一步提升其稳健性。此外,我们分析了对综合腐败图像混合策略的重要性,并揭示了在共同腐败背景下产生的鲁棒性准确性权衡的重要性。最后,我们表明我们的方法的计算效率允许它在线和离线数据增强方案轻松使用。
translated by 谷歌翻译
经过认证的稳健性保证衡量模型对测试时间攻击的稳健性,并且可以评估模型对现实世界中部署的准备情况。在这项工作中,我们批判性地研究了对基于随机平滑的认证方法的对抗鲁棒性如何在遇到配送外(OOD)数据的最先进的鲁棒模型时改变。我们的分析显示了这些模型的先前未知的漏洞,以低频OOD数据,例如与天气相关的损坏,使这些模型不适合在野外部署。为了缓解这个问题,我们提出了一种新的数据增强方案,Fourimix,产生增强以改善训练数据的光谱覆盖范围。此外,我们提出了一种新规范器,鼓励增强数据的噪声扰动的一致预测,以提高平滑模型的质量。我们发现Fouriermix增强有助于消除可认真强大的模型的频谱偏差,使其能够在一系列ood基准上实现明显更好的稳健性保证。我们的评估还在突出模型的光谱偏差时揭示了当前的OOD基准。为此,我们提出了一个全面的基准套件,其中包含来自光谱域中不同区域的损坏。对拟议套件上流行的增强方法培训的模型的评估突出了它们的光谱偏差,并建立了富硫克斯训练型模型在实现整个频谱上变化下的更好认证的鲁棒性担保的优势。
translated by 谷歌翻译
当前,随机平滑被认为是获得确切可靠分类器的最新方法。尽管其表现出色,但该方法仍与各种严重问题有关,例如``认证准确性瀑布'',认证与准确性权衡甚至公平性问题。已经提出了依赖输入的平滑方法,目的是克服这些缺陷。但是,我们证明了这些方法缺乏正式的保证,因此所产生的证书是没有道理的。我们表明,一般而言,输入依赖性平滑度遭受了维数的诅咒,迫使方差函数具有低半弹性。另一方面,我们提供了一个理论和实用的框架,即使在严格的限制下,即使在有维度的诅咒的情况下,即使在存在维度的诅咒的情况下,也可以使用依赖输入的平滑。我们提供平滑方差功能的一种混凝土设计,并在CIFAR10和MNIST上进行测试。我们的设计减轻了经典平滑的一些问题,并正式下划线,但仍需要进一步改进设计。
translated by 谷歌翻译
Any classifier can be "smoothed out" under Gaussian noise to build a new classifier that is provably robust to $\ell_2$-adversarial perturbations, viz., by averaging its predictions over the noise via randomized smoothing. Under the smoothed classifiers, the fundamental trade-off between accuracy and (adversarial) robustness has been well evidenced in the literature: i.e., increasing the robustness of a classifier for an input can be at the expense of decreased accuracy for some other inputs. In this paper, we propose a simple training method leveraging this trade-off to obtain robust smoothed classifiers, in particular, through a sample-wise control of robustness over the training samples. We make this control feasible by using "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input. Specifically, we differentiate the training objective depending on this proxy to filter out samples that are unlikely to benefit from the worst-case (adversarial) objective. Our experiments show that the proposed method, despite its simplicity, consistently exhibits improved certified robustness upon state-of-the-art training methods. Somewhat surprisingly, we find these improvements persist even for other notions of robustness, e.g., to various types of common corruptions.
translated by 谷歌翻译
野外的深度学习(DL)的成功采用需要模型:(1)紧凑,(2)准确,(3)强大的分布换档。不幸的是,同时满足这些要求的努力主要是不成功的。这提出了一个重要问题:无法创建紧凑,准确,强大的深神经网络(卡)基础?为了回答这个问题,我们对流行的模型压缩技术进行了大规模分析,该技术揭示了几种有趣模式。值得注意的是,与传统的修剪方法相比(例如,微调和逐渐修剪),我们发现“彩票式风格”方法令人惊讶地用于生产卡,包括二进制牌。具体而言,我们能够创建极其紧凑的卡,与其较大的对应物相比,具有类似的测试精度和匹配(或更好)的稳健性 - 仅通过修剪和(可选)量化。利用卡的紧凑性,我们开发了一种简单的域 - 自适应测试时间合并方法(卡片 - 甲板),它使用门控模块根据与测试样本的光谱相似性动态地选择相应的卡片。该拟议的方法建立了一个“赢得胜利”的卡片,即在CiFar-10-C精度(即96.8%标准和92.75%的鲁棒)和CiFar-100- C精度(80.6%标准和71.3%的稳健性),内存使用率比非压缩基线(Https://github.com/robustbench/robustbench提供的预制卡和卡片 - 甲板)。最后,我们为我们的理论支持提供了理论支持经验研究结果。
translated by 谷歌翻译
We study how robust current ImageNet models are to distribution shifts arising from natural variations in datasets. Most research on robustness focuses on synthetic image perturbations (noise, simulated weather artifacts, adversarial examples, etc.), which leaves open how robustness on synthetic distribution shift relates to distribution shift arising in real data. Informed by an evaluation of 204 ImageNet models in 213 different test conditions, we find that there is often little to no transfer of robustness from current synthetic to natural distribution shift. Moreover, most current techniques provide no robustness to the natural distribution shifts in our testbed. The main exception is training on larger and more diverse datasets, which in multiple cases increases robustness, but is still far from closing the performance gaps. Our results indicate that distribution shifts arising in real data are currently an open research problem. We provide our testbed and data as a resource for future work at https://modestyachts.github.io/imagenet-testbed/.
translated by 谷歌翻译
Modern deep neural networks can achieve high accuracy when the training distribution and test distribution are identically distributed, but this assumption is frequently violated in practice. When the train and test distributions are mismatched, accuracy can plummet. Currently there are few techniques that improve robustness to unforeseen data shifts encountered during deployment. In this work, we propose a technique to improve the robustness and uncertainty estimates of image classifiers. We propose AUGMIX, a data processing technique that is simple to implement, adds limited computational overhead, and helps models withstand unforeseen corruptions. AUGMIX significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance in some cases by more than half.
translated by 谷歌翻译
In this paper we establish rigorous benchmarks for image classifier robustness. Our first benchmark, IMAGENET-C, standardizes and expands the corruption robustness topic, while showing which classifiers are preferable in safety-critical applications. Then we propose a new dataset called IMAGENET-P which enables researchers to benchmark a classifier's robustness to common perturbations. Unlike recent robustness research, this benchmark evaluates performance on common corruptions and perturbations not worst-case adversarial perturbations. We find that there are negligible changes in relative corruption robustness from AlexNet classifiers to ResNet classifiers. Afterward we discover ways to enhance corruption and perturbation robustness. We even find that a bypassed adversarial defense provides substantial common perturbation robustness. Together our benchmarks may aid future work toward networks that robustly generalize.
translated by 谷歌翻译
Deep neural networks achieve high prediction accuracy when the train and test distributions coincide. In practice though, various types of corruptions occur which deviate from this setup and cause severe performance degradations. Few methods have been proposed to address generalization in the presence of unforeseen domain shifts. In particular, digital noise corruptions arise commonly in practice during the image acquisition stage and present a significant challenge for current robustness approaches. In this paper, we propose a diverse Gaussian noise consistency regularization method for improving robustness of image classifiers under a variety of noise corruptions while still maintaining high clean accuracy. We derive bounds to motivate and understand the behavior of our Gaussian noise consistency regularization using a local loss landscape analysis. We show that this simple approach improves robustness against various unforeseen noise corruptions by 4.2-18.4% over adversarial training and other strong diverse data augmentation baselines across several benchmarks. Furthermore, when combined with state-of-the-art diverse data augmentation techniques, experiments against state-of-the-art show our method further improves robustness accuracy by 3.7% and uncertainty calibration by 5.5% for all common corruptions on several image classification benchmarks.
translated by 谷歌翻译
深度学习方法通​​过依靠极大的大量参数化神经网络来提供许多应用程序的最先进性能。但是,此类网络已被证明非常脆弱,并不能很好地概括为新用途案例,并且通常很难在资源有限的平台上部署。模型修剪,即减少网络的大小,是一种广泛采用的策略,可以导致更健壮和可推广的网络 - 通常较小的数量级,具有相同甚至改善的性能。尽管有许多用于修剪模型的启发式方法,但我们对修剪过程的理解仍然有限。实证研究表明,某些启发式方法可以改善性能,而另一些可以使模型更脆或具有其他副作用。这项工作旨在阐明不同的修剪方法如何改变网络的内部功能表示以及对模型性能的相应影响。为了提供模型特征空间的有意义的比较和表征,我们使用三个几何指标,这些指标是从共同采用的分类损失中分解的。使用这些指标,我们设计了一个可视化系统,以突出修剪对模型预测以及潜在功能嵌入的影响。所提出的工具为探索和研究修剪方法以及修剪和原始模型之间的差异提供了一个环境。通过利用我们的可视化,ML研究人员不仅可以识别模型修剪和数据损坏的样本,而且还可以获得有关某些修剪模型如何实现出色鲁棒性能的见解和解释。
translated by 谷歌翻译
提高深神经网络(DNN)对分布(OOD)数据的准确性对于在现实世界应用中接受深度学习(DL)至关重要。已经观察到,分布(ID)与OOD数据的准确性遵循线性趋势和模型表现优于该基线非常罕见(并被称为“有效鲁棒”)。最近,已经开发出一些有前途的方法来提高OOD的鲁棒性:模型修剪,数据增强和结合或零射门评估大型预审预周化模型。但是,仍然对观察有效鲁棒性所需的OOD数据和模型属性的条件尚无清晰的了解。我们通过对多种方法进行全面的经验研究来解决这个问题,这些方法已知会影响OOD鲁棒性,对CIFAR-10和Imagenet的广泛自然和合成分布转移。特别是,我们通过傅立叶镜头观察“有效的鲁棒性难题”,并询问模型和OOD数据的光谱特性如何影响相应的有效鲁棒性。我们发现这个傅立叶镜头提供了一些深入的了解,为什么某些强大的模型,尤其是夹家族的模型,可以实现稳健性。但是,我们的分析还清楚地表明,没有已知的指标始终是对OOD鲁棒性的最佳解释(甚至是强烈的解释)。因此,为了帮助未来对OOD难题的研究,我们通过引入一组预处理的模型(固定的模型),以有效的稳健性(可公开可鲁棒)解决了差距,这些模型(固有的模型)以及不同级别的OOD稳健性。
translated by 谷歌翻译
尽管存在许多减少卷积神经网络(CNN)过度拟合的方法,但仍不清楚如何自信地衡量过度拟合的程度。但是,反映过度拟合水平的度量可能非常有用,可对不同体系结构的比较和评估各种技术来应对过度拟合。由于过度拟合的神经网络倾向于记住训练数据中的噪声而不是普遍看不见的数据,因此我们研究了训练精度在增加数据扰动的存在并研究与过度拟合的联系时如何变化。尽管以前的工作仅针对标签噪声,但我们还是研究了一系列技术,以将噪声注入训练数据,包括对抗性扰动和输入损坏。基于此,我们定义了两个新的指标,可以自信地区分正确的模型和过度拟合模型。为了进行评估,我们得出了事先已知过度拟合行为的模型池。为了测试各种因素的效果,我们基于VGG和Resnet引入了架构中的几种反拟合措施,并研究其影响,包括正则化技术,训练集大小和参数数量。最后,我们通过测量模型池外几个CNN体系结构的过度拟合度来评估所提出的指标的适用性。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
分批归一化(BN)是一种无处不在的技术,用于训练深层神经网络,可加速其收敛以达到更高的准确性。但是,我们证明了BN具有根本的缺点:它激励该模型依赖于训练(内域)数据高度特定的低变义特征,从而损害了室外示例的概括性能。在这项工作中,我们首先表明在各种架构上删除BN层会导致较低的域外和腐败错误,而造成较高的内域错误,因此我们首先研究了这种现象。然后,我们提出了反平衡老师(CT),该方法利用与老师的老师一起利用同一模型的冷冻副本,通过通过一致性损失功能实质上调整其权重来实现学生网络对强大表示的学习。该正则化信号有助于CT在不可预见的数据变化中表现良好,即使没有从目标域中的信息如先前的工作中。从理论上讲,我们在过度参数化的线性回归设置中显示了为什么归一化导致模型对这种内域特征的依赖,并通过验证CT的功效来证明CT的功效,从而在稳健性基准(例如CIFAR-10-C,CIFAR-10-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100)上表现出了疗效。和VLCS。
translated by 谷歌翻译
机器学习模型的性能会在数据的分布变化下大大降低。我们提出了一种新的分类方法,可以通过将有关数据的“高级”结构与标准分类器相结合,可以改善分配变化的鲁棒性。 。然后,在每个群集中,我们通过诸如Deep Neural Networks之类的标准模型来学习基于更精细的歧视特征的本地分类器。我们在内存分类器中建立了概括界限。我们在实验中说明它们可以改善图像数据集上的分布变化的概括和稳健性。我们展示的进步超出了标准数据增强技术。
translated by 谷歌翻译
网络体系结构搜索(NAS),尤其是可区分的体系结构搜索(DARTS)方法,已经显示出在特定感兴趣的特定数据集中学习出色的模型体系结构的强大力量。与使用固定的数据集相反,在这项工作中,我们关注NAS的不同但重要的方案:如何完善部署的网络模型体系结构,以增强其鲁棒性,并通过一些收集和错误分类的示例的指导来增强其鲁棒性,这些示例被某些降低了现实世界中的未知损坏具有特定的模式(例如噪声,模糊等)。为此,我们首先进行了一项实证研究,以验证模型体系结构绝对与腐败模式有关。令人惊讶的是,通过仅添加一些损坏和错误分类的示例(例如,$ 10^3 $示例)到清洁培训数据集(例如$ 5.0 \ times 10^4 $示例)中,我们可以完善模型体系结构并显着增强鲁棒性。为了使其更加实用,应仔细研究关键问题,即如何为有效的NAS指导选择适当的失败示例。然后,我们提出了一个新颖的核心失效指导飞镖,该飞镖嵌入了K-Center-Greedy算法的飞镖,以选择合适的损坏故障示例以完善模型体系结构。我们使用我们的方法在清洁和15个腐败上使用飞镖精制的DNN,并在四个特定的现实世界腐败的指导下进行了指导。与最先进的NAS以及基于数据启发的增强方法相比,我们的最终方法可以在损坏的数据集和原始清洁数据集上获得更高的精度。在某些腐败模式上,我们可以达到超过45%的绝对准确性提高。
translated by 谷歌翻译