放射学诊断的传统数据集倾向于在放射学报告旁边提供放射学图像。但是,放射科医生进行的放射学读数是一个复杂的过程,在阅读过程中,放射科医生的眼睛固定等信息有可能成为可从中学习的宝贵数据源。但是,此类数据的收集既昂贵又耗时。这导致了一个问题,即此类数据是否值得投资收集。本文利用最近发表的Eye Gaze数据集对面对不同级别的输入功能的影响的影响和解释性(DL)分类的影响进行详尽的研究,即:放射学图像,放射学报告文本和放射学家眼睛凝视数据。我们发现,通过放射学报告自由文本和放射学图像的组合,可以实现X射线图像的最佳分类性能,而眼睛凝视数据没有提供性能的提升。尽管如此,与培训的模型相比,与从事分类和注意力图的模型相比,眼睛凝视数据将作为次级基础真理以及类标签以及类似于辅助图的模型产生更好的注意力图。
translated by 谷歌翻译
由于深度学习在放射学领域被广泛使用,因此在使用模型进行诊断时,这种模型的解释性越来越成为获得临床医生的信任至关重要的。在这项研究中,使用U-NET架构进行了三个实验集,以改善分类性能,同时通过在训练过程中结合热图生成器来增强与模型相对应的热图。所有实验均使用包含胸部X光片的数据集,来自三个条件之一(“正常”,“充血性心力衰竭(CHF)”和“肺炎”)的相关标签,以及有关放射科医师眼神坐标的数值信息在图像上。引入该数据集的论文(A. Karargyris和Moradi,2021年)开发了一个U-NET模型,该模型被视为这项研究的基线模型,以显示如何将眼目光数据用于多模式培训中的眼睛凝视数据以进行多模式培训以进行多模式训练。解释性改进。为了比较分类性能,测量了接收器操作特征曲线(AUC)下面积的95%置信区间(CI)。最佳方法的AUC为0.913(CI:0.860-0.966)。最大的改进是“肺炎”和“ CHF”类别,基线模型最努力地进行分类,导致AUCS 0.859(CI:0.732-0.957)和0.962(CI:0.933-0.989)。所提出的方法的解码器还能够产生概率掩模,以突出模型分类中确定的图像部分,类似于放射科医生的眼睛凝视数据。因此,这项工作表明,将热图发生器和眼睛凝视信息纳入训练可以同时改善疾病分类,并提供可解释的视觉效果,与放射线医生在进行诊断时如何看待胸部X光片。
translated by 谷歌翻译
每年医生对患者的基于形象的诊断需求越来越大,是最近的人工智能方法可以解决的问题。在这种情况下,我们在医学图像的自动报告领域进行了调查,重点是使用深神经网络的方法,了解:(1)数据集,(2)架构设计,(3)解释性和(4)评估指标。我们的调查确定了有趣的发展,也是留下挑战。其中,目前对生成的报告的评估尤为薄弱,因为它主要依赖于传统的自然语言处理(NLP)指标,这不准确地捕获医疗正确性。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals' Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems.In this paper, we present a new chest X-ray database, namely "ChestX-ray8", which comprises 108,948 frontalview X-ray images of 32,717 unique patients with the textmined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weaklysupervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based "reading chest X-rays" (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems.
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)占据了计算机视野的领域,这要归功于它们提取功能及其在分类问题中出色的表现,例如在自动分析X射线中。不幸的是,这些神经网络被认为是黑盒算法,即不可能了解该算法如何实现最终结果。要将这些算法应用于不同领域并测试方法论的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实生活中,例如胸部X射线射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是类不平衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了可解释的AI技术。该技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即它们标志着专家将用来做出决定的区域。
translated by 谷歌翻译
卷积神经网络(CNN)已成功应用于胸部X射线(CXR)图像。此外,已证明注释的边界框可以改善CNN的可解释性,以定位异常。但是,只有几个相对较小的CXR数据集可用,并且收集它们非常昂贵。在放射科医生的临床工作流程期间,可以计时地,可以以非侵入性的方式收集眼睛跟踪(ET)数据。我们使用从放射科医生记录的ET数据,同时要求CXR报告训练CNN。我们通过将它们与关键字的命令相关联,并使用它们来监督异常的本地化,从而从ET数据中提取摘要。我们表明,此方法改善了模型的解释性,而不会影响其图像级分类。
translated by 谷歌翻译
在深度学习方法进行自动医学图像分析的最新成功之前,从业者使用手工制作的放射线特征来定量描述当地的医学图像斑块。但是,提取区分性放射素特征取决于准确的病理定位,这在现实世界中很难获得。尽管疾病分类和胸部X射线的定位方面取得了进步,但许多方法未能纳入临床知名的领域知识。由于这些原因,我们提出了一个放射素引导的变压器(RGT),该变压器(RGT)与\ textit {global}图像信息与\ textit {local}知识引导的放射线信息信息提供准确的心肺病理学定位和分类\ textit {无需任何界限盒{ }。 RGT由图像变压器分支,放射线变压器分支以及聚集图像和放射线信息的融合层组成。 RGT使用对图像分支的自我注意事项,提取了一个边界框来计算放射线特征,该特征由放射线分支进一步处理。然后通过交叉注意层融合学习的图像和放射线特征。因此,RGT利用了一种新型的端到端反馈回路,该回路只能使用图像水平疾病标签引导精确的病理定位。 NIH CHESTXRAR数据集的实验表明,RGT的表现优于弱监督疾病定位的先前作品(在各个相交联合阈值的平均余量为3.6 \%)和分类(在接收器操作方下平均1.1 \%\%\%\%曲线)。接受代码和训练有素的模型将在接受后发布。
translated by 谷歌翻译
自动临床标题生成问题被称为建议模型,将额叶X射线扫描与放射学记录中的结构化患者信息结合在一起。我们将两种语言模型结合在一起,即表演 - 泰尔和GPT-3,以生成全面和描述性的放射学记录。这些模型的建议组合产生了文本摘要,其中包含有关发现的病理,其位置以及将每个病理定位在原始X射线扫描中的每个病理的2D热图。提出的模型在两个医学数据集(Open-I,Mimic-CXR和通用MS-Coco)上进行了测试。用自然语言评估指标测量的结果证明了它们对胸部X射线图像字幕的有效适用性。
translated by 谷歌翻译
人工智能被出现为众多临床应用诊断和治疗决策的有用援助。由于可用数据和计算能力的快速增加,深度神经网络的性能与许多任务中的临床医生相同或更好。为了符合信任AI的原则,AI系统至关重要的是透明,强大,公平和确保责任。由于对决策过程的具体细节缺乏了解,目前的深神经系统被称为黑匣子。因此,需要确保在常规临床工作流中纳入常规神经网络之前的深度神经网络的可解释性。在这一叙述审查中,我们利用系统的关键字搜索和域专业知识来确定已经基于所产生的解释和技术相似性的类型的医学图像分析应用的深度学习模型来确定九种不同类型的可解释方法。此外,我们报告了评估各种可解释方法产生的解释的进展。最后,我们讨论了局限性,提供了利用可解释性方法和未来方向的指导,了解医学成像分析深度神经网络的解释性。
translated by 谷歌翻译
放射学报告生成旨在产生计算机辅助诊断,以缓解放射科医生的工作量,并最近引起了越来越长的关注。然而,之前的深度学习方法倾向于忽视医学发现之间的相互影响,这可以是限制所生成的报告质量的瓶颈。在这项工作中,我们建议在信息知识图表中提出和代表医学发现的协会,并将此事先知识纳入放射学报告,以帮助提高所生成的报告质量。实验结果证明了我们在IU X射线数据集上的提出方法的优越性,Rouge-L为0.384 $ \ PM $ 0.007和0.340 $ \ PM $ 0.011。与以前的作品相比,我们的模型平均实现了1.6%(苹果酒和Rouge-L的增加2.0%和1.5%)。实验表明,先验知识可以为准确的放射学报告生成表现收益。我们将在https://github.com/bionlplab/report_generation_amia2022中公开公开可用的代码。
translated by 谷歌翻译
生物医学中的多模式数据遍布,例如放射学图像和报告。大规模解释这些数据对于改善临床护理和加速临床研究至关重要。与一般领域相比,具有复杂语义的生物医学文本在视觉建模中提出了其他挑战,并且先前的工作使用了缺乏特定领域语言理解的适应性模型不足。在本文中,我们表明,有原则的文本语义建模可以大大改善自我监督的视力 - 语言处理中的对比度学习。我们发布了一种实现最先进的语言模型,从而通过改进的词汇和新颖的语言预测客观的客观利用语义和话语特征在放射学报告中获得了自然语言推断。此外,我们提出了一种自我监督的联合视觉 - 语言方法,重点是更好的文本建模。它在广泛的公开基准上建立了新的最新结果,部分是通过利用我们新的特定领域的语言模型。我们释放了一个新的数据集,该数据集具有放射科医生的局部对齐短语接地注释,以促进生物医学视觉处理中复杂语义建模的研究。广泛的评估,包括在此新数据集中,表明我们的对比学习方法在文本语义建模的帮助下,尽管仅使用了全球对准目标,但在细分任务中的表现都优于细分任务中的先验方法。
translated by 谷歌翻译
大多数深度学习算法都缺乏对其预测的解释,这限制了其在临床实践中的部署。改善解释性的方法,尤其是在医学成像中,经常被证明可以传达有限的信息,过于放心或缺乏健壮性。在这项工作中,我们介绍了生成自然语言解释(NLE)的任务,以证明对医学图像的预测是合理的。NLE是人类友好且全面的,并能够培训本质上可解释的模型。为了实现这一目标,我们介绍了模仿 - nle,这是带有NLE的第一个大规模的医学成像数据集。它包含超过38,000个NLE,可以解释各种胸部病理和胸部X射线检查结果。我们提出了一种解决任务并评估该数据集中的几个架构的一般方法,包括通过临床医生评估。
translated by 谷歌翻译
使用X光片级注释(是或否疾病)和细粒病变级注释(病变边界框)开发了两个DL模型,分别为Chexnet和ChexDet。在测试集(n = 2,922)中比较了模型的内部分类性能和病变定位性能,在NIH-Google(n = 4,376)和Padchest(n = 24,536)数据集上比较了外部分类性能,以及外部病变的本地化性能性能在NIH-Chestx-Ray14数据集(n = 880)上进行了比较。还将模型与内部测试集子集的放射学家进行了比较(n = 496)。鉴于足够的训练数据,这两个模型都与放射科医生相当。 CHEXDET对外部分类有了显着改善,例如在NIH-Google上分类(ROC曲线下的ChexDet区域[AUC]:0.67:Chexnet AUC:0.51; P <.001)和PadChest(ChexDet AUC:0.78,Chexnet AUC,Chexnet AUC,Chexnet AUC,Chexnet auc:chexnet auc auc:chexnet auc auc auc:0.78,chexnet auc auc: :0.55; p <.001)。对于所有数据集的大多数异常,例如在内部集合中检测气胸(Chexdet Jacknife替代自由响应ROC的功绩[JAFROC-FOM]:0.87,0.87,CHEXNET JAFROC-FOM:0.113) ; p <.001)和NIH-Chestx-Ray14(Chexdet Jafroc-fom:0.55,Chexnet Jafroc-fom:0.04; p <.001)。总结,细粒的注释克服了快捷方式学习并启用了DL模型,以识别正确的病变模式,从而改善模型的概括性。
translated by 谷歌翻译
深度学习表明,最近在胸部X射线中对异常进行分类方面的成功,但是与自然图像数据集相比,数据集仍然很小。对异常本地化的监督已被证明可以改善训练有素的模型,部分补偿了数据集大小。但是,明确标记这些异常需要专家,并且非常耗时。我们提出了一种潜在的可扩展方法,用于使用眼动物跟踪器收集隐式定位数据,以捕获注视位置和麦克风来捕获报告的概念,从而模仿阅读室的设置。由五位放射科医生标记了所得的反射式(报告和眼睛跟踪数据,用于胸部X射线异常的定位)数据集,并包含3,032个同步的眼球跟踪数据集和时间戳报告的同步集,并从模拟的报告中进行了2,616胸部X射线的转录。 CXR数据集。我们还提供辅助注释,包括围绕肺和心脏的边界框以及由椭圆形成的椭圆形成异常和图像级标签的验证标签。此外,数据的一小部分包含所有放射科医生的读数,从而可以计算评估者分数。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
每年有大约4.5亿人受到肺炎的影响,导致250万人死亡。 Covid-19也影响了1.81亿人,这导致了392万人伤亡。如果早期诊断,两种疾病死亡可能会显着降低。然而,目前诊断肺炎(投诉+胸部X射线)和Covid-19(RT-PCR)的方法分别存在专家放射科医生和时间。在深度学习模型的帮助下,可以从胸部X射线或CT扫描立即检测肺炎和Covid-19。这样,诊断肺炎/ Covid-19的过程可以更有效和普遍地制作。在本文中,我们的目标是引出,解释和评估,定性和定量,深入学习方法的主要进步,旨在检测或定位社区获得的肺炎(帽),病毒肺炎和Covid-19从胸部X-的图像光线和CT扫描。作为一个系统的审查,本文的重点在于解释了深度学习模型架构,该架构已经被修改或从划痕,以便WIWTH对概括性的关注。对于每个模型,本文回答了模型所设计的方式的问题,特定模型克服的挑战以及修改模型到所需规格的折衷。还提供了本文描述的所有模型的定量分析,以量化不同模型的有效性与相似的目标。一些权衡无法量化,因此它们在定性分析中明确提到,在整个纸张中完成。通过在一个地方编译和分析大量的研究细节,其中包含所有数据集,模型架构和结果,我们的目标是为对此字段感兴趣的初学者和当前研究人员提供一站式解决方案。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
这项工作引入了图像分类器的注意机制和相应的深神经网络(DNN)结构,称为ISNET。在训练过程中,ISNET使用分割目标来学习如何找到图像感兴趣的区域并将注意力集中在其上。该提案基于一个新颖的概念,即在说明热图中的背景相关性最小化。它几乎可以应用于任何分类神经网络体系结构,而在运行时没有任何额外的计算成本。能够忽略背景的单个DNN可以替换分段者的通用管道,然后是分类器,更快,更轻。我们测试了ISNET的三种应用:Covid-19和胸部X射线中的结核病检测以及面部属性估计。前两个任务采用了混合培训数据库,并培养了快捷方式学习。通过关注肺部并忽略背景中的偏见来源,ISNET减少了问题。因此,它改善了生物医学分类问题中外部(分布外)测试数据集的概括,超越了标准分类器,多任务DNN(执行分类和细分),注意力门控神经网络以及标准段 - 分类管道。面部属性估计表明,ISNET可以精确地集中在面孔上,也适用于自然图像。 ISNET提出了一种准确,快速和轻的方法,可忽略背景并改善各种领域的概括。
translated by 谷歌翻译