放射学报告生成旨在产生计算机辅助诊断,以缓解放射科医生的工作量,并最近引起了越来越长的关注。然而,之前的深度学习方法倾向于忽视医学发现之间的相互影响,这可以是限制所生成的报告质量的瓶颈。在这项工作中,我们建议在信息知识图表中提出和代表医学发现的协会,并将此事先知识纳入放射学报告,以帮助提高所生成的报告质量。实验结果证明了我们在IU X射线数据集上的提出方法的优越性,Rouge-L为0.384 $ \ PM $ 0.007和0.340 $ \ PM $ 0.011。与以前的作品相比,我们的模型平均实现了1.6%(苹果酒和Rouge-L的增加2.0%和1.5%)。实验表明,先验知识可以为准确的放射学报告生成表现收益。我们将在https://github.com/bionlplab/report_generation_amia2022中公开公开可用的代码。
translated by 谷歌翻译
自动放射学报告生成在诊所至关重要,可以缓解来自繁重的工作量的经验丰富的放射科医师,并提醒缺乏误诊或错过诊断的缺乏经验的放射科学家。现有方法主要将放射学报告生成作为图像标题任务,采用编码器解码器框架。但是,在医学领域,这种纯数据驱动方法遭受以下问题:1)视觉和文本偏差问题; 2)缺乏专家知识。在本文中,我们提出了一种知识增强的放射学报告生成方法,介绍了两种类型的医学知识:1)一般知识,这是输入的独立知识,并为报告生成提供了广泛的知识; 2)特定知识,其输入依赖并为报告生成提供了细粒度的知识。为了充分利用一般和具体知识,我们还提出了一种知识增强的多主题注意机制。通过利用一般知识和特定知识来利用放射线图像的视觉特征,所提出的模型可以提高所生成的报告的质量。两种公共数据集IU-X射线和模拟CXR的实验结果表明,所提出的知识增强方法优于基于最先进的图像标题的方法。消融研究还表明,一般和具体知识都可以有助于提高放射学报告生成的表现。
translated by 谷歌翻译
从X射线图像中自动生成医疗报告可以帮助放射科医生执行耗时但重要的报告任务。然而,实现临床准确的生成报告仍然具有挑战性。发现使用知识图方法对潜在异常进行建模有望在提高临床准确性方面。在本文中,我们介绍了一种新型的罚款颗粒知识图结构,称为属性异常图(ATAG)。 ATAG由互连的异常节点和属性节点组成,使其可以更好地捕获异常细节。与手动构建异常图的现有方法相反,我们提出了一种方法,以根据注释,X射线数据集中的医疗报告和Radlex放射线词典自动构建细粒度的图形结构。然后,我们将使用深层模型与用编码器架构结构进行报告的ATAG嵌入。特别是,探索了图表网络以编码异常及其属性之间的关系。采用门控机制并将其与各种解码器整合在一起。我们根据基准数据集进行了广泛的实验,并表明基于ATAG的深层模型优于SOTA方法,并可以提高生成报告的临床准确性。
translated by 谷歌翻译
在诊所,放射学报告对于指导患者的治疗至关重要。不幸的是,报告写作对放射科医师造成了沉重的负担。为了有效地减少这种负担,在此提出了一种从胸部X射线的报告生成的自动,多模态方法。我们的方法,通过观察到放射学报告的描述与X射线图像高度相关,具有两个不同的模块:(i)学习知识库。为了吸收嵌入上述相关性的知识,我们根据文本嵌入自动构建知识库。 (ii)多模态对齐。为了促进报告,疾病标签和图像之间的语义对齐,我们明确地利用文本嵌入来指导视觉特征空间的学习。我们评估所提出的模型的表现,使用来自公共IU和模拟 - CXR数据集的自然语言生成和临床疗效。我们的消融研究表明,每个模块都有助于提高所生成的报告的质量。此外,借助两种模块,我们的方法显然优于最先进的方法。
translated by 谷歌翻译
医疗报告生成,旨在自动产生对特定医学形象的长期和连贯的报告,一直受到越来越多的研究兴趣。现有方法主要采用受监督的方式和大量依赖耦合图像报告对。但是,在医疗领域,建立大规模的图像报告配对数据集既耗时又昂贵。为了放宽对配对数据的依赖性,我们提出了一个无人监督的模型知识图形自动编码器(KGAE),它接受独立的图像集和报告。 KGAE由预构建的知识图形,知识驱动的编码器和知识驱动的解码器组成。知识图形作为桥接视觉和文本域的共享潜在空间;知识驱动的编码器将医学图像和报告报告到该潜在空间中的相应坐标,并且知识驱动的解码器在此空间中给出了坐标的医疗报告。由于知识驱动的编码器和解码器可以用独立的图像和报告培训,因此kgae是无监督的。实验表明,未经审计的KGAE在不使用任何图像报告培训对的情况下产生所需的医疗报告。此外,KGAE还可以在半监督和监督的环境中工作,并在培训中接受配对图像和报告。通过使用图像报告对进行进一步微调,KGAE始终如一地优于两个数据集上的当前最先进的模型。
translated by 谷歌翻译
自动放射学报告生成对于计算机辅助诊断至关重要。通过图像字幕的成功,可以实现医疗报告的生成。但是,缺乏注释的疾病标签仍然是该地区的瓶颈。此外,图像文本数据偏差问题和复杂的句子使生成准确的报告变得更加困难。为了解决这些差距,我们预定了一个自我引导的框架(SGF),这是一套无监督和监督的深度学习方法,以模仿人类的学习和写作过程。详细说明,我们的框架从具有额外的疾病标签的医学报告中获得了域知识,并指导自己提取与文本相关的罚款谷物视觉特征。此外,SGF通过纳入相似性比较机制,成功地提高了医疗报告生成的准确性和长度,该机制通过比较实践模仿了人类自我完善的过程。广泛的实验证明了我们在大多数情况下我们的SGF的实用性,表明其优于最先进的甲基动物。我们的结果突出了提议的框架的能力,以区分单词之间有罚的粒度视觉细节并验证其在生成医疗报告中的优势。
translated by 谷歌翻译
每年医生对患者的基于形象的诊断需求越来越大,是最近的人工智能方法可以解决的问题。在这种情况下,我们在医学图像的自动报告领域进行了调查,重点是使用深神经网络的方法,了解:(1)数据集,(2)架构设计,(3)解释性和(4)评估指标。我们的调查确定了有趣的发展,也是留下挑战。其中,目前对生成的报告的评估尤为薄弱,因为它主要依赖于传统的自然语言处理(NLP)指标,这不准确地捕获医疗正确性。
translated by 谷歌翻译
最近,胸部X射线报告生成,旨在自动生成给定的胸部X射线图像的描述,已得到越来越多的研究兴趣。胸部X射线报告生成的关键挑战是准确捕获和描述异常区域。在大多数情况下,普通区域主导整个胸部X射线图像,并且这些普通区域的相应描述主导了最终报告。由于这种数据偏差,基于学习的模型可能无法参加异常区域。在这项工作中,为了有效地捕获和描述异常区域,我们提出了对比的注意(CA)模型。 CA模型而不是仅专注于电流输入图像,而是将电流输入图像与正常图像进行比较以蒸馏对比信息。获得的对比信息可以更好地代表异常区域的视觉特征。根据公共IU-X射线和模仿-CXR数据集的实验,将我们的CA纳入几个现有型号可以在大多数指标上提升它们的性能。此外,根据分析,CA型号可以帮助现有的模型更好地参加异常区域,并提供更准确的描述,这对可解释的诊断至关重要。具体而言,我们在两个公共数据集上实现最先进的结果。
translated by 谷歌翻译
自动临床标题生成问题被称为建议模型,将额叶X射线扫描与放射学记录中的结构化患者信息结合在一起。我们将两种语言模型结合在一起,即表演 - 泰尔和GPT-3,以生成全面和描述性的放射学记录。这些模型的建议组合产生了文本摘要,其中包含有关发现的病理,其位置以及将每个病理定位在原始X射线扫描中的每个病理的2D热图。提出的模型在两个医学数据集(Open-I,Mimic-CXR和通用MS-Coco)上进行了测试。用自然语言评估指标测量的结果证明了它们对胸部X射线图像字幕的有效适用性。
translated by 谷歌翻译
放射学报告产生(RRG)旨在用类似人类的语言描述自动放射学图像,并有可能支持放射科医生的工作,从而减轻手动报告的负担。先前的方法通常采用编码器架构,并专注于单模式特征学习,而很少的研究探索了跨模式特征交互。在这里,我们提出了一个跨模式原型驱动网络(XPRONET),以促进跨模式模式学习并利用它以改善放射学报告生成的任务。这是通过三个精心设计,完全可区分和互补的模块来实现的:共享的跨模式原型矩阵来记录跨模式原型;一个跨模式原型网络,可学习跨模式原型,并将交叉模式信息嵌入视觉和文本特征中;以及改进的多标签对比度损失,以实现和增强多标签原型学习。 Xpronet在IU-XRAR和MIMIC-CXR基准方面取得了重大改进,其性能超过了最新的最新方法,从IU-XRAY上的差距很大,并且在Mimic-CXR上的性能可比性。
translated by 谷歌翻译
医疗报告的生成是一项具有挑战性的任务,因为它耗时,需要经验丰富的放射科医生的专业知识。医疗报告生成的目的是准确捕获和描述图像发现。先前的作品在不同域中使用大型数据集预处理其视觉编码神经网络,这些数据集无法在特定的医疗领域中学习一般的视觉表示。在这项工作中,我们提出了一个医学报告生成框架,该框架使用对比度学习方法来预处理视觉编码器,并且不需要其他元信息。此外,我们在对比度学习框架中采用肺部分割作为增强方法。该分割指导网络专注于编码肺部区域内的视觉特征。实验结果表明,所提出的框架可以在定量和定性上提高生成的医疗报告的性能和质量。
translated by 谷歌翻译
除了主要的诊断目的之外,放射学报告一直是医学研究中的宝贵信息来源。鉴于放射学报告的语料,研究人员往往有兴趣识别描述特定医疗发现的报告子集。由于放射学报告中的医学发现的空间是巨大的并且可能是无限的,最近的研究提出了在放射学报告中的自由文本陈述,从有限词汇中采取的半结构化串。本文旨在提出一种方法,用于自动生成放射学报告的半结构化表示。该方法包括匹配从放射学报告的句子来手动创建半结构化表示,然后学习序列到序列神经模型,将匹配的句子映射到它们的半结构化表示。我们在手动注释的胸部X射线放射学报告的Openi语料上进行了评估了所提出的方法。结果表明,所提出的方法优于几个基线,无论如何(1)诸如BLEU,RUEGE和流星等定量措施和放射科学家的定性判断。结果还表明,培训的模型对来自不同医疗提供者的胸X射线放射学报告的样本型语料库产生合理的半结构化表示。
translated by 谷歌翻译
观察一组图像及其相应的段落限制,一个具有挑战性的任务是学习如何生成语义连贯的段落来描述图像的视觉内容。受到将语义主题纳入此任务的最新成功的启发,本文开发了插件的层次结构引导图像段落生成框架,该框架将视觉提取器与深层主题模型相结合,以指导语言模型的学习。为了捕获图像和文本在多个抽象层面上的相关性并从图像中学习语义主题,我们设计了一个变异推理网络,以构建从图像功能到文本字幕的映射。为了指导段落的生成,学习的层次主题和视觉特征被整合到语言模型中,包括长期的短期记忆(LSTM)和变压器,并共同优化。公共数据集上的实验表明,在标准评估指标方面具有许多最先进的方法竞争的拟议模型可用于提炼可解释的多层语义主题并产生多样的和相干的标题。我们在https://github.com/dandanguo1993/vtcm aseal-image-image-paragraph-caption.git上发布代码
translated by 谷歌翻译
放射学诊断的传统数据集倾向于在放射学报告旁边提供放射学图像。但是,放射科医生进行的放射学读数是一个复杂的过程,在阅读过程中,放射科医生的眼睛固定等信息有可能成为可从中学习的宝贵数据源。但是,此类数据的收集既昂贵又耗时。这导致了一个问题,即此类数据是否值得投资收集。本文利用最近发表的Eye Gaze数据集对面对不同级别的输入功能的影响的影响和解释性(DL)分类的影响进行详尽的研究,即:放射学图像,放射学报告文本和放射学家眼睛凝视数据。我们发现,通过放射学报告自由文本和放射学图像的组合,可以实现X射线图像的最佳分类性能,而眼睛凝视数据没有提供性能的提升。尽管如此,与培训的模型相比,与从事分类和注意力图的模型相比,眼睛凝视数据将作为次级基础真理以及类标签以及类似于辅助图的模型产生更好的注意力图。
translated by 谷歌翻译
自动射线照相报告生成是一项具有挑战性的跨域任务,旨在自动生成准确和语义辅助报告以描述医学图像。尽管该领域最近取得了进展,但至少在以下方面仍然存在许多挑战。首先,射线照相图像彼此非常相似,因此很难像许多现有方法一样,使用CNN作为视觉特征提取器捕获细粒度的视觉差异。此外,语义信息已被广泛应用以提高发电任务的性能(例如图像字幕),但现有方法通常无法提供有效的医学语义功能。为了解决这些问题,在本文中,我们提出了一个记忆启动的稀疏注意区块,利用双线性池来捕获输入细粒图像特征之间的高阶相互作用,同时产生稀疏的注意力。此外,我们介绍了一个新颖的医学概念生成网络(MCGN),以预测细粒的语义概念,并将其纳入报告生成过程中。我们提出的方法在最近发布的最大基准Mimic-CXR上显示出有希望的性能。它的表现优于图像字幕和医疗报告生成中的多种最新方法。
translated by 谷歌翻译
本文对过去二十年来对自然语言生成(NLG)的研究提供了全面的审查,特别是与数据到文本生成和文本到文本生成深度学习方法有关,以及NLG的新应用技术。该调查旨在(a)给出关于NLG核心任务的最新综合,以及该领域采用的建筑;(b)详细介绍各种NLG任务和数据集,并提请注意NLG评估中的挑战,专注于不同的评估方法及其关系;(c)强调一些未来的强调和相对近期的研究问题,因为NLG和其他人工智能领域的协同作用而增加,例如计算机视觉,文本和计算创造力。
translated by 谷歌翻译
在临床实践中,放射科医生经常使用属性,例如病变的形态学和外观特征,以帮助疾病诊断。有效地建模属性以及所有涉及属性的关系可以提高医学图像诊断算法的概括能力和可验证性。在本文中,我们介绍了一种用于基于可验证属性的医学图像诊断的混合神经培养基推理算法。在我们的混合算法中,有两个平行分支,一个贝叶斯网络分支执行概率因果关系推理,图形卷积网络分支执行了使用特征表示的更通用的关系建模和推理。这两个分支之间的紧密耦合是通过跨网络注意机制及其分类结果的融合来实现的。我们已成功地将混合推理算法应用于两个具有挑战性的医学图像诊断任务。在LIDC-IDRI基准数据集上,用于CT图像中肺结核的良性恶性分类,我们的方法达到了95.36 \%的新最新精度,AUC为96.54 \%。我们的方法还可以在内部胸部X射线图像数据集上提高3.24 \%的精度,以诊断结核病。我们的消融研究表明,在非常有限的培训数据下,与纯神经网络体系结构相比,我们的混合算法的概括性能要好得多。
translated by 谷歌翻译
视频字幕定位目标将复杂的视觉内容解释为文本说明,这要求模型充分了解包括对象及其交互的视频场景。流行的方法采用现成的对象检测网络来提供对象建议,并使用注意机制来建模对象之间的关系。他们通常会错过一些预验证模型的不确定语义概念,并且无法识别对象之间的确切谓词关系。在本文中,我们研究了为给定视频生成文本描述的开放研究任务,并提出了带有元概念的跨模式图(CMG)。具体而言,为了涵盖视频字幕中有用的语义概念,我们弱地学习了文本描述的相应视觉区域,其中相关的视觉区域和文本单词被命名为跨模式元概念。我们通过学习的跨模式元概念动态地构建元概念图。我们还构建了整体视频级别和本地框架级视频图,并具有预测的谓词,以建模视频序列结构。我们通过广泛的实验来验证我们提出的技术的功效,并在两个公共数据集上实现最新结果。
translated by 谷歌翻译
放射学报告是非结构化的,并包含由放射科医生转录的成像发现和相应的诊断,包括临床事实和否定和/或不确定的陈述。从放射学报告中提取病理发现和诊断对于质量控制,人口健康和监测疾病进展至关重要。现有的作品,主要依赖于基于规则的系统或基于变压器的预训练模型微调,但不能考虑事实和不确定的信息,因此产生假阳性输出。在这项工作中,我们介绍了三种宗旨的增强技术,在产生了对比学习的增强时保留了事实和关键信息。我们介绍了Radbert-Cl,通过自我监督的对比损失将这些信息融入蓝莓。我们对MIMIC-CXR的实验显示了RADBERT-CL在多级多标签报告分类的微调上的卓越性能。我们说明,当有很少有标记的数据时,Radbert-Cl以常规的SOTA变压器(BERT / Bluebert)优于更大的边缘(6-11%)。我们还表明,Radbert-CL学习的表示可以在潜伏空间中捕获关键的医疗信息。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译