使用X光片级注释(是或否疾病)和细粒病变级注释(病变边界框)开发了两个DL模型,分别为Chexnet和ChexDet。在测试集(n = 2,922)中比较了模型的内部分类性能和病变定位性能,在NIH-Google(n = 4,376)和Padchest(n = 24,536)数据集上比较了外部分类性能,以及外部病变的本地化性能性能在NIH-Chestx-Ray14数据集(n = 880)上进行了比较。还将模型与内部测试集子集的放射学家进行了比较(n = 496)。鉴于足够的训练数据,这两个模型都与放射科医生相当。 CHEXDET对外部分类有了显着改善,例如在NIH-Google上分类(ROC曲线下的ChexDet区域[AUC]:0.67:Chexnet AUC:0.51; P <.001)和PadChest(ChexDet AUC:0.78,Chexnet AUC,Chexnet AUC,Chexnet AUC,Chexnet auc:chexnet auc auc:chexnet auc auc auc:0.78,chexnet auc auc: :0.55; p <.001)。对于所有数据集的大多数异常,例如在内部集合中检测气胸(Chexdet Jacknife替代自由响应ROC的功绩[JAFROC-FOM]:0.87,0.87,CHEXNET JAFROC-FOM:0.113) ; p <.001)和NIH-Chestx-Ray14(Chexdet Jafroc-fom:0.55,Chexnet Jafroc-fom:0.04; p <.001)。总结,细粒的注释克服了快捷方式学习并启用了DL模型,以识别正确的病变模式,从而改善模型的概括性。
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals' Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems.In this paper, we present a new chest X-ray database, namely "ChestX-ray8", which comprises 108,948 frontalview X-ray images of 32,717 unique patients with the textmined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weaklysupervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based "reading chest X-rays" (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems.
translated by 谷歌翻译
尽管在计算机视觉中的深度学习成功,但识别微妙和小物体(或地区)的算法仍然具有挑战性。例如,识别棒球或在地面场景中的飞盘或X射线图像中的骨折可以容易地导致过度装备,除非有大量的训练数据。为缓解此问题,我们需要一种方法来强制模型应该在有限的培训数据中识别微妙地区。在本文中,我们提出了一种称为Cut \&Rest的简单但有效的监督增强方法。它在各种医学图像域(内部资源和公共数据集)和自然图像域(MS-Coco $ _S $)中取得了更好的性能,而不是其他监督的增强和明确的指导方法。此外,使用类激活图,我们确定了剪切\和保持方法驱动模型,以有效地专注于相关的微妙和小区域。我们还表明,沿着切割\和保持比单调增加的性能,表明即使仅应用了有限量的切割量,也可以提高模型,从而允许改进的低监督(注释)成本。
translated by 谷歌翻译
Age-related macular degeneration (AMD) is a degenerative disorder affecting the macula, a key area of the retina for visual acuity. Nowadays, it is the most frequent cause of blindness in developed countries. Although some promising treatments have been developed, their effectiveness is low in advanced stages. This emphasizes the importance of large-scale screening programs. Nevertheless, implementing such programs for AMD is usually unfeasible, since the population at risk is large and the diagnosis is challenging. All this motivates the development of automatic methods. In this sense, several works have achieved positive results for AMD diagnosis using convolutional neural networks (CNNs). However, none incorporates explainability mechanisms, which limits their use in clinical practice. In that regard, we propose an explainable deep learning approach for the diagnosis of AMD via the joint identification of its associated retinal lesions. In our proposal, a CNN is trained end-to-end for the joint task using image-level labels. The provided lesion information is of clinical interest, as it allows to assess the developmental stage of AMD. Additionally, the approach allows to explain the diagnosis from the identified lesions. This is possible thanks to the use of a CNN with a custom setting that links the lesions and the diagnosis. Furthermore, the proposed setting also allows to obtain coarse lesion segmentation maps in a weakly-supervised way, further improving the explainability. The training data for the approach can be obtained without much extra work by clinicians. The experiments conducted demonstrate that our approach can identify AMD and its associated lesions satisfactorily, while providing adequate coarse segmentation maps for most common lesions.
translated by 谷歌翻译
Deep learning (DL) analysis of Chest X-ray (CXR) and Computed tomography (CT) images has garnered a lot of attention in recent times due to the COVID-19 pandemic. Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data. Applications developed for medical image analysis require high sensitivity and precision compared to any other fields. Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets. This encouraged us to develop a CNN model, analyze and understand the performance of it by visualizing the predictions of the model using class activation maps generated using (Gradient-weighted Class Activation Mapping) Grad-CAM technique. This study provides a detailed discussion of the success and failure of the proposed model at an image level. Performance of the model is compared with state-of-the-art DL models and shown to be comparable. The data and code used are available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
目的:要开发CADIA,一种基于区域提案网络的监督深度学习模型,耦合具有针对计算机断层造影(CTA)颅内动脉瘤(IA)的假阳性减少模块,并评估我们的模型的性能到类似的检测网络。方法:在此回顾性研究中,我们评估了来自两种独立的疾病患者的两种单独的患者患者的囊性IA> = 2.5mm。实施了两步模型:用于初始动脉瘤检测的3D区域提案网络,以及3D DENSENETSFOR虚假阳性降低以及对可疑IA的进一步确定。还进行了自由响应接收器操作特征(FROC)曲线和患者级性能,在既定的假每体积(FPPV)时呈现出误报。 Fisher的确切测试用于与类似的可用模型进行比较。结果:0.25和1 FPPV的Cadia的敏感性分别为63.9%和77.5%。我们的模型的性能随着尺寸和位置而变化,最佳性能是在5-10毫米和前沟通动脉的含量,敏感性分别为95.8%和94%的敏感性。与0.25 FPPV的可用型号相比,我们的模型显示出统计学上更高的患者级精度,灵敏度和特异性。在1 FPPV阈值下,我们的模型显示出更好的准确性和特异性(P <= 0.001)和等效灵敏度。结论:CADIA在IA的检测任务中表现出可比网络。添加假阳性还原模块是改善IA检测模型的可行步骤。
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
机器学习和深度学习方法对医学的计算机辅助预测成为必需的,在乳房X光检查领域也具有越来越多的应用。通常,这些算法训练,针对特定任务,例如,病变的分类或乳房X乳线图的病理学状态的预测。为了获得患者的综合视图,随后整合或组合所有针对同一任务培训的模型。在这项工作中,我们提出了一种管道方法,我们首先培训一组个人,任务特定的模型,随后调查其融合,与标准模型合并策略相反。我们使用混合患者模型的深度学习模型融合模型预测和高级功能,以在患者水平上构建更强的预测因子。为此,我们提出了一种多分支深度学习模型,其跨不同任务和乳房X光检查有效地融合了功能,以获得全面的患者级预测。我们在公共乳房X线摄影数据,即DDSM及其策划版本CBIS-DDSM上培训并评估我们的全部管道,并报告AUC评分为0.962,以预测任何病变和0.791的存在,以预测患者水平对恶性病变的存在。总体而言,与标准模型合并相比,我们的融合方法将显着提高AUC得分高达0.04。此外,通过提供与放射功能相关的特定于任务的模型结果,提供了与放射性特征相关的任务特定模型结果,我们的管道旨在密切支持放射科学家的阅读工作流程。
translated by 谷歌翻译
我们考虑临床应用异常定位问题。虽然深入学习推动了最近的医学成像进展,但许多临床挑战都没有完全解决,限制了其更广泛的使用。虽然最近的方法报告了高的诊断准确性,但医生因普遍缺乏算法决策和解释性而涉及诊断决策的这些算法,这是关注这些算法。解决这个问题的一种潜在方法是进一步培训这些模型,以便除了分类它们之外,除了分类。然而,准确地进行这一临床专家需要大量的疾病定位注释,这是对大多数应用程序来实现昂贵的任务。在这项工作中,我们通过一种新的注意力弱监督算法来解决这些问题,该弱势监督算法包括分层关注挖掘框架,可以以整体方式统一激活和基于梯度的视觉关注。我们的关键算法创新包括明确序号注意约束的设计,实现了以弱监督的方式实现了原则的模型培训,同时还通过本地化线索促进了产生视觉关注驱动的模型解释。在两个大型胸部X射线数据集(NIH Chescx-Ray14和Chexpert)上,我们展示了对现有技术的显着本地化性能,同时也实现了竞争的分类性能。我们的代码可在https://github.com/oyxhust/ham上找到。
translated by 谷歌翻译
In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specific needs within the industry. Deep learning in healthcare had become incredibly powerful for supporting clinics and in transforming patient care in general. Deep learning is increasingly being applied for the detection of clinically important features in the images beyond what can be perceived by the naked human eye. Chest X-ray images are one of the most common clinical method for diagnosing a number of diseases such as pneumonia, lung cancer and many other abnormalities like lesions and fractures. Proper diagnosis of a disease from X-ray images is often challenging task for even expert radiologists and there is a growing need for computerized support systems due to the large amount of information encoded in X-Ray images. The goal of this paper is to develop a lightweight solution to detect 14 different chest conditions from an X ray image. Given an X-ray image as input, our classifier outputs a label vector indicating which of 14 disease classes does the image fall into. Along with the image features, we are also going to use non-image features available in the data such as X-ray view type, age, gender etc. The original study conducted Stanford ML Group is our base line. Original study focuses on predicting 5 diseases. Our aim is to improve upon previous work, expand prediction to 14 diseases and provide insight for future chest radiography research.
translated by 谷歌翻译
每年有大约4.5亿人受到肺炎的影响,导致250万人死亡。 Covid-19也影响了1.81亿人,这导致了392万人伤亡。如果早期诊断,两种疾病死亡可能会显着降低。然而,目前诊断肺炎(投诉+胸部X射线)和Covid-19(RT-PCR)的方法分别存在专家放射科医生和时间。在深度学习模型的帮助下,可以从胸部X射线或CT扫描立即检测肺炎和Covid-19。这样,诊断肺炎/ Covid-19的过程可以更有效和普遍地制作。在本文中,我们的目标是引出,解释和评估,定性和定量,深入学习方法的主要进步,旨在检测或定位社区获得的肺炎(帽),病毒肺炎和Covid-19从胸部X-的图像光线和CT扫描。作为一个系统的审查,本文的重点在于解释了深度学习模型架构,该架构已经被修改或从划痕,以便WIWTH对概括性的关注。对于每个模型,本文回答了模型所设计的方式的问题,特定模型克服的挑战以及修改模型到所需规格的折衷。还提供了本文描述的所有模型的定量分析,以量化不同模型的有效性与相似的目标。一些权衡无法量化,因此它们在定性分析中明确提到,在整个纸张中完成。通过在一个地方编译和分析大量的研究细节,其中包含所有数据集,模型架构和结果,我们的目标是为对此字段感兴趣的初学者和当前研究人员提供一站式解决方案。
translated by 谷歌翻译
世界目前正在经历持续的传染病大流行病,该传染病是冠状病毒疾病2019(即covid-19),这是由严重的急性呼吸综合征冠状病毒2(SARS-COV-2)引起的。计算机断层扫描(CT)在评估感染的严重程度方面发挥着重要作用,并且还可用于识别这些症状和无症状的Covid-19载体。随着Covid-19患者的累积数量的激增,放射科医师越来越强调手动检查CT扫描。因此,自动化3D CT扫描识别工具的需求量高,因为手动分析对放射科医师耗时,并且它们的疲劳可能导致可能的误判。然而,由于位于不同医院的CT扫描仪的各种技术规范,CT图像的外观可能显着不同,导致许多自动图像识别方法的失败。因此,多域和多扫描仪研究的多域移位问题是不可能对可靠识别和可再现和客观诊断和预后至关重要的至关重要。在本文中,我们提出了Covid-19 CT扫描识别模型即Coronavirus信息融合和诊断网络(CIFD-NET),可以通过新的强大弱监督的学习范式有效地处理多域移位问题。与其他最先进的方法相比,我们的模型可以可靠,高效地解决CT扫描图像中不同外观的问题。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
目的:为全身CT设计多疾病分类扫描使用自动提取标签从放射科文reports.Materials和方法三个不同的器官系统:这项回顾性研究共有12,092例患者(平均年龄57 + - 18; 6172名妇女)包括对模型开发和测试(2012-2017自)。基于规则的算法被用来从12,092患者提取13667身体CT扫描19,225疾病的标签。使用三维DenseVNet,三个器官系统是分段的:肺和胸膜;肝胆;和肾脏及输尿管。对于每个器官,三维卷积神经网络分类没有明显的疾病与四种常见疾病为跨越所有三个模型总共15个不同的标签。测试是在相对于2875个手动导出的参考标签2158个CT体积的子集从2133名患者( - ; 1079名妇女18,平均年龄58 +)进行。性能报告为曲线(AUC)与通过方法德朗95%置信区间下接收器的操作特性的区域。结果:提取的标签说明书验证确认91%横跨15个不同的唱片公司99%的准确率。对于肺和胸膜标签的AUC分别为:肺不张0.77(95%CI:0.74,0.81),结节0.65(0.61,0.69),肺气肿0.89(0.86,0.92),积液0.97(0.96,0.98),并且没有明显的疾病0.89( 0.87,0.91)。对于肝和胆囊的AUC分别为:肝胆钙化0.62(95%CI:0.56,0.67),病变0.73(0.69,0.77),扩张0.87(0.84,0.90),脂肪0.89(0.86,0.92),并且没有明显的疾病0.82( 0.78,0.85)。对于肾脏及输尿管的AUC分别为:石0.83(95%CI:0.79,0.87),萎缩0.92(0.89,0.94),病变0.68(0.64,0.72),囊肿0.70(0.66,0.73),并且没有明显的疾病0.79(0.75 ,0.83)。结论:弱监督深度学习模型能够在多器官系统不同的疾病分类。
translated by 谷歌翻译
由于深度学习在放射学领域被广泛使用,因此在使用模型进行诊断时,这种模型的解释性越来越成为获得临床医生的信任至关重要的。在这项研究中,使用U-NET架构进行了三个实验集,以改善分类性能,同时通过在训练过程中结合热图生成器来增强与模型相对应的热图。所有实验均使用包含胸部X光片的数据集,来自三个条件之一(“正常”,“充血性心力衰竭(CHF)”和“肺炎”)的相关标签,以及有关放射科医师眼神坐标的数值信息在图像上。引入该数据集的论文(A. Karargyris和Moradi,2021年)开发了一个U-NET模型,该模型被视为这项研究的基线模型,以显示如何将眼目光数据用于多模式培训中的眼睛凝视数据以进行多模式培训以进行多模式训练。解释性改进。为了比较分类性能,测量了接收器操作特征曲线(AUC)下面积的95%置信区间(CI)。最佳方法的AUC为0.913(CI:0.860-0.966)。最大的改进是“肺炎”和“ CHF”类别,基线模型最努力地进行分类,导致AUCS 0.859(CI:0.732-0.957)和0.962(CI:0.933-0.989)。所提出的方法的解码器还能够产生概率掩模,以突出模型分类中确定的图像部分,类似于放射科医生的眼睛凝视数据。因此,这项工作表明,将热图发生器和眼睛凝视信息纳入训练可以同时改善疾病分类,并提供可解释的视觉效果,与放射线医生在进行诊断时如何看待胸部X光片。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)占据了计算机视野的领域,这要归功于它们提取功能及其在分类问题中出色的表现,例如在自动分析X射线中。不幸的是,这些神经网络被认为是黑盒算法,即不可能了解该算法如何实现最终结果。要将这些算法应用于不同领域并测试方法论的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实生活中,例如胸部X射线射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是类不平衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了可解释的AI技术。该技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即它们标志着专家将用来做出决定的区域。
translated by 谷歌翻译
这项工作引入了图像分类器的注意机制和相应的深神经网络(DNN)结构,称为ISNET。在训练过程中,ISNET使用分割目标来学习如何找到图像感兴趣的区域并将注意力集中在其上。该提案基于一个新颖的概念,即在说明热图中的背景相关性最小化。它几乎可以应用于任何分类神经网络体系结构,而在运行时没有任何额外的计算成本。能够忽略背景的单个DNN可以替换分段者的通用管道,然后是分类器,更快,更轻。我们测试了ISNET的三种应用:Covid-19和胸部X射线中的结核病检测以及面部属性估计。前两个任务采用了混合培训数据库,并培养了快捷方式学习。通过关注肺部并忽略背景中的偏见来源,ISNET减少了问题。因此,它改善了生物医学分类问题中外部(分布外)测试数据集的概括,超越了标准分类器,多任务DNN(执行分类和细分),注意力门控神经网络以及标准段 - 分类管道。面部属性估计表明,ISNET可以精确地集中在面孔上,也适用于自然图像。 ISNET提出了一种准确,快速和轻的方法,可忽略背景并改善各种领域的概括。
translated by 谷歌翻译