目的:为全身CT设计多疾病分类扫描使用自动提取标签从放射科文reports.Materials和方法三个不同的器官系统:这项回顾性研究共有12,092例患者(平均年龄57 + - 18; 6172名妇女)包括对模型开发和测试(2012-2017自)。基于规则的算法被用来从12,092患者提取13667身体CT扫描19,225疾病的标签。使用三维DenseVNet,三个器官系统是分段的:肺和胸膜;肝胆;和肾脏及输尿管。对于每个器官,三维卷积神经网络分类没有明显的疾病与四种常见疾病为跨越所有三个模型总共15个不同的标签。测试是在相对于2875个手动导出的参考标签2158个CT体积的子集从2133名患者( - ; 1079名妇女18,平均年龄58 +)进行。性能报告为曲线(AUC)与通过方法德朗95%置信区间下接收器的操作特性的区域。结果:提取的标签说明书验证确认91%横跨15个不同的唱片公司99%的准确率。对于肺和胸膜标签的AUC分别为:肺不张0.77(95%CI:0.74,0.81),结节0.65(0.61,0.69),肺气肿0.89(0.86,0.92),积液0.97(0.96,0.98),并且没有明显的疾病0.89( 0.87,0.91)。对于肝和胆囊的AUC分别为:肝胆钙化0.62(95%CI:0.56,0.67),病变0.73(0.69,0.77),扩张0.87(0.84,0.90),脂肪0.89(0.86,0.92),并且没有明显的疾病0.82( 0.78,0.85)。对于肾脏及输尿管的AUC分别为:石0.83(95%CI:0.79,0.87),萎缩0.92(0.89,0.94),病变0.68(0.64,0.72),囊肿0.70(0.66,0.73),并且没有明显的疾病0.79(0.75 ,0.83)。结论:弱监督深度学习模型能够在多器官系统不同的疾病分类。
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals' Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems.In this paper, we present a new chest X-ray database, namely "ChestX-ray8", which comprises 108,948 frontalview X-ray images of 32,717 unique patients with the textmined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weaklysupervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based "reading chest X-rays" (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems.
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
早期检测改善了胰腺导管腺癌(PDAC)中的预后,但挑战,因为病变通常很小,并且在对比增强的计算断层扫描扫描(CE-CT)上定义很差。深度学习可以促进PDAC诊断,但是当前模型仍然无法识别小(<2cm)病变。在这项研究中,最先进的深度学习模型用于开发用于PDAC检测的自动框架,专注于小病变。另外,研究了整合周围解剖学的影响。 CE-CT来自119个病理验证的PDAC患者的群组和123名没有PDAC患者的队列用于训练NNUNET用于自动病变检测和分割(\ TEXTIT {NNUNET \ _t})。训练了两种额外的鼻塞,以研究解剖学积分的影响:(1)分割胰腺和肿瘤(\ yryit {nnunet \ _tp}),(2)分割胰腺,肿瘤和多周围的解剖结构(\ textit {nnunet \_多发性硬化症})。外部可公开的测试集用于比较三个网络的性能。 \ Textit {nnunet \ _ms}实现了最佳性能,在整个测试集的接收器操作特性曲线下的区域为0.91,肿瘤的0.88 <2cm,显示最先进的深度学习可以检测到小型PDAC和解剖信息的好处。
translated by 谷歌翻译
了解模型预测在医疗保健方面至关重要,以促进模型正确性的快速验证,并防止利用利用混淆变量的模型。我们介绍了体积医学图像中可解释的多种异常分类的挑战新任务,其中模型必须指示用于预测每个异常的区域。为了解决这项任务,我们提出了一个多实例学习卷积神经网络,AxialNet,允许识别每个异常的顶部切片。接下来我们将赫雷库姆纳入注意机制,识别子切片区域。我们证明,对于Axialnet,Hirescam的说明得到保证,以反映所用模型的位置,与Grad-Cam不同,有时突出不相关的位置。使用一种产生忠实解释的模型,我们旨在通过一种新颖的面具损失来改善模型的学习,利用赫克斯克姆和3D允许的区域来鼓励模型仅预测基于器官的异常,其中出现的异常。 3D允许的区域通过新方法,分区自动获得,其组合从放射学报告中提取的位置信息与通过形态图像处理获得的器官分割图。总体而言,我们提出了第一种模型,用于解释容量医学图像中的可解释的多异常预测,然后使用掩模损耗来实现36,316扫描的Rad-Chessct数据集中多个异常的器官定位提高33%,代表状态本领域。这项工作推进了胸部CT卷中多种异常模型的临床适用性。
translated by 谷歌翻译
这项研究的目的是开发一个强大的基于深度学习的框架,以区分Covid-19,社区获得的肺炎(CAP)和基于使用各种方案和放射剂量在不同成像中心获得的胸部CT扫描的正常病例和正常情况。我们表明,虽然我们的建议模型是在使用特定扫描协议仅从一个成像中心获取的相对较小的数据集上训练的,但该模型在使用不同技术参数的多个扫描仪获得的异质测试集上表现良好。我们还表明,可以通过无监督的方法来更新模型,以应对火车和测试集之间的数据移动,并在从其他中心接收新的外部数据集时增强模型的鲁棒性。我们采用了合奏体系结构来汇总该模型的多个版本的预测。为了初始培训和开发目的,使用了171 Covid-19、60 CAP和76个正常情况的内部数据集,其中包含使用恒定的标准辐射剂量扫描方案从一个成像中心获得的体积CT扫描。为了评估模型,我们回顾了四个不同的测试集,以研究数据特征对模型性能的转移的影响。在测试用例中,有与火车组相似的CT扫描,以及嘈杂的低剂量和超低剂量CT扫描。此外,从患有心血管疾病或手术病史的患者中获得了一些测试CT扫描。这项研究中使用的整个测试数据集包含51 covid-19、28 CAP和51例正常情况。实验结果表明,我们提出的框架在所有测试集上的表现良好,达到96.15%的总准确度(95%CI:[91.25-98.74]),COVID-119,COVID-96.08%(95%CI:[86.54-99.5],95%),[86.54-99.5],),,),敏感性。帽敏感性为92.86%(95%CI:[76.50-99.19])。
translated by 谷歌翻译
世界目前正在经历持续的传染病大流行病,该传染病是冠状病毒疾病2019(即covid-19),这是由严重的急性呼吸综合征冠状病毒2(SARS-COV-2)引起的。计算机断层扫描(CT)在评估感染的严重程度方面发挥着重要作用,并且还可用于识别这些症状和无症状的Covid-19载体。随着Covid-19患者的累积数量的激增,放射科医师越来越强调手动检查CT扫描。因此,自动化3D CT扫描识别工具的需求量高,因为手动分析对放射科医师耗时,并且它们的疲劳可能导致可能的误判。然而,由于位于不同医院的CT扫描仪的各种技术规范,CT图像的外观可能显着不同,导致许多自动图像识别方法的失败。因此,多域和多扫描仪研究的多域移位问题是不可能对可靠识别和可再现和客观诊断和预后至关重要的至关重要。在本文中,我们提出了Covid-19 CT扫描识别模型即Coronavirus信息融合和诊断网络(CIFD-NET),可以通过新的强大弱监督的学习范式有效地处理多域移位问题。与其他最先进的方法相比,我们的模型可以可靠,高效地解决CT扫描图像中不同外观的问题。
translated by 谷歌翻译
Despite high global prevalence of hepatic steatosis, no automated diagnostics demonstrated generalizability in detecting steatosis on multiple international datasets. Traditionally, hepatic steatosis detection relies on clinicians selecting the region of interest (ROI) on computed tomography (CT) to measure liver attenuation. ROI selection demands time and expertise, and therefore is not routinely performed in populations. To automate the process, we validated an existing artificial intelligence (AI) system for 3D liver segmentation and used it to purpose a novel method: AI-ROI, which could automatically select the ROI for attenuation measurements. AI segmentation and AI-ROI method were evaluated on 1,014 non-contrast enhanced chest CT images from eight international datasets: LIDC-IDRI, NSCLC-Lung1, RIDER, VESSEL12, RICORD-1A, RICORD-1B, COVID-19-Italy, and COVID-19-China. AI segmentation achieved a mean dice coefficient of 0.957. Attenuations measured by AI-ROI showed no significant differences (p = 0.545) and a reduction of 71% time compared to expert measurements. The area under the curve (AUC) of the steatosis classification of AI-ROI is 0.921 (95% CI: 0.883 - 0.959). If performed as a routine screening method, our AI protocol could potentially allow early non-invasive, non-pharmacological preventative interventions for hepatic steatosis. 1,014 expert-annotated liver segmentations of patients with hepatic steatosis annotations can be downloaded here: https://drive.google.com/drive/folders/1-g_zJeAaZXYXGqL1OeF6pUjr6KB0igJX.
translated by 谷歌翻译
我们提出了一个数据收集和注释管道,该数据从越南放射学报告中提取信息,以提供胸部X射线(CXR)图像的准确标签。这可以通过注释与其特有诊断类别的数据相匹配,这些数据可能因国家而异。为了评估所提出的标签技术的功效,我们构建了一个包含9,752项研究的CXR数据集,并使用该数据集的子集评估了我们的管道。以F1得分为至少0.9923,评估表明,我们的标签工具在所有类别中都精确而始终如一。构建数据集后,我们训练深度学习模型,以利用从大型公共CXR数据集传输的知识。我们采用各种损失功能来克服不平衡的多标签数据集的诅咒,并使用各种模型体系结构进行实验,以选择提供最佳性能的诅咒。我们的最佳模型(CHEXPERT-FRECTER EDIDENENET-B2)的F1得分为0.6989(95%CI 0.6740,0.7240),AUC为0.7912,敏感性为0.7064,特异性为0.8760,普遍诊断为0.8760。最后,我们证明了我们的粗分类(基于五个特定的异常位置)在基准CHEXPERT数据集上获得了可比的结果(十二个病理),以进行一般异常检测,同时在所有类别的平均表现方面提供更好的性能。
translated by 谷歌翻译
Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. 1
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
基于深入的学习的诊断性能随着更多的注释数据而增加,但手动注释是大多数领域的瓶颈。专家在临床常规期间评估诊断图像,并在报告中写出他们的调查结果。基于临床报告的自动注释可以克服手动标记瓶颈。我们假设可以使用这些报告的稀疏信息引导的模型预测来生成用于检测任务的密度注释。为了证明疗效,我们在放射学报告中临床显着发现的数量指导的临床上显着的前列腺癌(CSPCA)注释。我们包括7,756个前列腺MRI检查,其中3,050人被手动注释,4,706次自动注释。我们对手动注释的子集进行了自动注释质量:我们的得分提取正确地确定了99.3 \%$ 99.3 \%$ 99.3 \%$的CSPCA病变数量,我们的CSPCA分段模型正确地本地化了83.8 \ PM 1.1 \%$的病变。我们评估了来自外部中心的300名检查前列腺癌检测表现,具有组织病理学证实的基础事实。通过自动标记的考试增强培训集改善了在接收器的患者的诊断区域,从$ 88.1 \ pm 1.1 \%$至89.8 \ pm 1.0 \%$($ p = 1.2 \ cdot 10 ^ { - 4} $ )每案中的一个错误阳性的基于病变的敏感性,每案件从79.2美元2.8 \%$ 85.4 \ PM 1.9 \%$($ P <10 ^ { - 4} $),以$ alm \ pm std。$超过15个独立运行。这种改进的性能展示了我们报告引导的自动注释的可行性。源代码在https://github.com/diagnijmegen/report-guiding-annotation上公开可用。最佳的CSPCA检测算法在https://grand-challenge.org/algorithms/bpmri-cspca-detection-report-guiding-annotations/中提供。
translated by 谷歌翻译
在COVID-19大流行期间,在COVID-19诊断的紧急环境中进行的大量成像量导致临床CXR获取的差异很大。在所使用的CXR投影,添加图像注释以及临床图像的旋转程度和旋转程度中可以看到这种变化。图像分析社区试图通过开发自动化的CoVID-19诊断算法来减轻大流行期间过度拉伸放射学部门的负担,该诊断算法是CXR成像的输入。已利用大量公开的CXR数据集来改善CoVID-19诊断的深度学习算法。然而,公开可用数据集中临床可获得的CXR的可变质量可能会对算法性能产生深远的影响。 COVID-19可以通过图像标签等图像上的非动物特征的算法来推断诊断。这些成像快捷方式可能是数据集特定的,并限制了AI系统的概括性。因此,了解和纠正CXR图像中的关键潜在偏差是CXR图像分析之前的重要第一步。在这项研究中,我们提出了一种简单有效的逐步方法,以预处理Covid-19胸部X射线数据集以消除不希望的偏见。我们进行消融研究以显示每个单个步骤的影响。结果表明,使用我们提出的管道可以将基线共证检测算法的精度提高到13%。
translated by 谷歌翻译
机器学习(ML)是人工智能(AI)的子场,其放射学中的应用正在以不断加速的速度增长。研究最多的ML应用程序是图像的自动解释。但是,可以将自然语言处理(NLP)与文本解释任务组合的ML结合使用,在放射学中也具有许多潜在的应用。一种这样的应用是放射学原始胶体的自动化,涉及解释临床放射学转介并选择适当的成像技术。这是一项必不可少的任务,可确保执行正确的成像。但是,放射科医生必须将专门用于原始胶片的时间进行报告,与推荐人或教学进行报告,交流。迄今为止,很少有使用临床文本自动选择协议选择的ML模型的出版物。本文回顾了该领域的现有文献。参考机器学习公约建议的最佳实践对已发布模型进行系统评估。讨论了在临床环境中实施自动质胶的进展。
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specific needs within the industry. Deep learning in healthcare had become incredibly powerful for supporting clinics and in transforming patient care in general. Deep learning is increasingly being applied for the detection of clinically important features in the images beyond what can be perceived by the naked human eye. Chest X-ray images are one of the most common clinical method for diagnosing a number of diseases such as pneumonia, lung cancer and many other abnormalities like lesions and fractures. Proper diagnosis of a disease from X-ray images is often challenging task for even expert radiologists and there is a growing need for computerized support systems due to the large amount of information encoded in X-Ray images. The goal of this paper is to develop a lightweight solution to detect 14 different chest conditions from an X ray image. Given an X-ray image as input, our classifier outputs a label vector indicating which of 14 disease classes does the image fall into. Along with the image features, we are also going to use non-image features available in the data such as X-ray view type, age, gender etc. The original study conducted Stanford ML Group is our base line. Original study focuses on predicting 5 diseases. Our aim is to improve upon previous work, expand prediction to 14 diseases and provide insight for future chest radiography research.
translated by 谷歌翻译
对头部磁共振成像(MRI)检查的需求不断增长,以及全球放射科医生的短缺,导致在全球报告头部MRI扫描所花费的时间增加。对于许多神经系统疾病,这种延迟会导致发病率和死亡率增加。一种自动分解工具可以通过在成像时识别异常并确定这些扫描的报告优先级来减少异常检查的报告时间。在这项工作中,我们提出了一个卷积神经网络,用于检测$ \ text {t} _2 $加权的头部MRI扫描中临床上相关的异常。使用经过验证的神经放射学报告分类器,我们从两家英国两家大型医院进行了43,754张标记的数据集,以进行模型培训,并在800张测试集上证明了准确的分类(AUC下的区域(AUC)= 0.943),由800张扫描集进行了标签。神经放射学家团队。重要的是,当仅在一家医院接受扫描培训时,模型从另一家医院进行了扫描($ \ delta $ auc $ \ leq $ 0.02)。一项模拟研究表明,我们的模型将使异常检查的平均报告时间从28天到14天,并从两家医院的9天到5天,这表明在临床分类环境中使用了可行性。
translated by 谷歌翻译
逆转录 - 聚合酶链反应(RT-PCR)目前是Covid-19诊断中的金标准。然而,它可以花几天来提供诊断,假负率相对较高。成像,特别是胸部计算断层扫描(CT),可以有助于诊断和评估这种疾病。然而,表明标准剂量CT扫描对患者提供了显着的辐射负担,尤其是需要多次扫描的患者。在这项研究中,我们考虑低剂量和超低剂量(LDCT和ULDCT)扫描方案,其减少靠近单个X射线的辐射曝光,同时保持可接受的分辨率以进行诊断目的。由于胸部放射学专业知识可能不会在大流行期间广泛使用,我们使用LDCT / ULDCT扫描的收集的数据集进行人工智能(AI)基础的框架,以研究AI模型可以提供人为级性能的假设。 AI模型使用了两个阶段胶囊网络架构,可以快速对Covid-19,社区获得的肺炎(帽)和正常情况进行分类,使用LDCT / ULDCT扫描。 AI模型实现Covid-19敏感性为89.5%+ - 0.11,帽敏感性为95%+ \ - 0.11,正常情况敏感性(特异性)85.7%+ - 0.16,精度为90%+ \ - 0.06。通过纳入临床数据(人口统计和症状),性能进一步改善了Covid-19敏感性为94.3%+ \ - PM 0.05,帽敏感性为96.7%+ \ - 0.07,正常情况敏感性(特异性)91%+ - 0.09,精度为94.1%+ \ - 0.03。所提出的AI模型基于降低辐射暴露的LDCT / ULDCT扫描来实现人级诊断。我们认为,所提出的AI模型有可能协助放射科医师准确,并迅速诊断Covid-19感染,并帮助控制大流行期间的传输链。
translated by 谷歌翻译