总变化(TV)流产生了基于电视功能的图像的比例空间表示。该梯度流观察到图像的理想特征,例如锋利的边缘和启用光谱,比例和纹理分析。电视流的标准数值方法需要解决多个非平滑优化问题。即使采用最先进的凸优化技术,这通常也很昂贵,并且强烈激励使用替代,更快的方法。受到物理信息神经网络(PINN)的框架的启发,我们提出了TVFlownet,这是一种神经网络方法,以计算给定初始图像和时间实例的电视流的解决方案。我们大大将计算时间加快了一个以上的数量级,并表明TVFlownet具有高保真度近似电视流解决方案。这是一份初步报告,将有更多详细信息。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
物理知情的神经网络(PINN)要求定期的基础PDE解决方案,以确保准确的近似值。因此,它们可能会在近似PDE的不连续溶液(例如非线性双曲方程)的情况下失败。为了改善这一点,我们提出了一种新颖的PINN变体,称为弱PINN(WPINNS),以准确地近似标量保护定律的熵溶液。WPINN是基于近似于根据Kruzkhov熵定义的残留的最小最大优化问题的解决方案,以确定近似熵解决方案的神经网络的参数以及测试功能。我们证明了WPINN发生的误差的严格界限,并通过数值实验说明了它们的性能,以证明WPINN可以准确地近似熵解决方案。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
机器学习方法最近在求解部分微分方程(PDE)中的承诺。它们可以分为两种广泛类别:近似解决方案功能并学习解决方案操作员。物理知识的神经网络(PINN)是前者的示例,而傅里叶神经操作员(FNO)是后者的示例。这两种方法都有缺点。 Pinn的优化是具有挑战性,易于发生故障,尤其是在多尺度动态系统上。 FNO不会遭受这种优化问题,因为它在给定的数据集上执行了监督学习,但获取此类数据可能太昂贵或无法使用。在这项工作中,我们提出了物理知识的神经运营商(Pino),在那里我们结合了操作学习和功能优化框架。这种综合方法可以提高PINN和FNO模型的收敛速度和准确性。在操作员学习阶段,Pino在参数PDE系列的多个实例上学习解决方案操作员。在测试时间优化阶段,Pino优化预先训练的操作员ANSATZ,用于PDE的查询实例。实验显示Pino优于许多流行的PDE家族的先前ML方法,同时保留与求解器相比FNO的非凡速度。特别是,Pino准确地解决了挑战的长时间瞬态流量,而其他基线ML方法无法收敛的Kolmogorov流程。
translated by 谷歌翻译
High-dimensional PDEs have been a longstanding computational challenge. We propose to solve highdimensional PDEs by approximating the solution with a deep neural network which is trained to satisfy the differential operator, initial condition, and boundary conditions. Our algorithm is meshfree, which is key since meshes become infeasible in higher dimensions. Instead of forming a mesh, the neural network is trained on batches of randomly sampled time and space points. The algorithm is tested on a class of high-dimensional free boundary PDEs, which we are able to accurately solve in up to 200 dimensions. The algorithm is also tested on a high-dimensional Hamilton-Jacobi-Bellman PDE and Burgers' equation. The deep learning algorithm approximates the general solution to the Burgers' equation for a continuum of different boundary conditions and physical conditions (which can be viewed as a high-dimensional space). We call the algorithm a "Deep Galerkin Method (DGM)" since it is similar in spirit to Galerkin methods, with the solution approximated by a neural network instead of a linear combination of basis functions. In addition, we prove a theorem regarding the approximation power of neural networks for a class of quasilinear parabolic PDEs.
translated by 谷歌翻译
实用的图像分割任务涉及必须从嘈杂,扭曲和/或不完整的观察值重建的图像。解决此类任务的最新方法是使用分段共同执行此次重建,使用每个分段来指导彼此。但是,迄今为止,这项工作采用了相对简单的分割方法,例如Chan - VESE算法。在本文中,我们提出了一种使用基于图的分割方法进行联合重建分割的方法,该方法一直在看到最近的兴趣增加。由于涉及的矩阵尺寸较大而引起并发症,我们展示了如何管理这些并发症。然后,我们分析我们方案的收敛属性。最后,我们将此方案应用于``两个母牛''图像的扭曲版本,该版本是先前基于图的分割文献中熟悉的``两个奶牛''图像,首先是高度噪声的版本,其次是模糊的版本,在两种情况下都可以实现高度准确的细分。我们将这些结果与通过顺序重建分割方法获得的结果进行比较,发现我们的方法与重建和分割精度相比,甚至均超过了这些方法。
translated by 谷歌翻译
Physics-Informed Neural Networks (PINN) are algorithms from deep learning leveraging physical laws by including partial differential equations together with a respective set of boundary and initial conditions as penalty terms into their loss function. In this work, we observe the significant role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively. To this end, we implement and evaluate different methods aiming at balancing the contributions of multiple terms of the PINNs loss function and their gradients. After reviewing of three existing loss scaling approaches (Learning Rate Annealing, GradNorm and SoftAdapt), we propose a novel self-adaptive loss balancing scheme for PINNs named \emph{ReLoBRaLo} (Relative Loss Balancing with Random Lookback). We extensively evaluate the performance of the aforementioned balancing schemes by solving both forward as well as inverse problems on three benchmark PDEs for PINNs: Burgers' equation, Kirchhoff's plate bending equation and Helmholtz's equation. The results show that ReLoBRaLo is able to consistently outperform the baseline of existing scaling methods in terms of accuracy, while also inducing significantly less computational overhead.
translated by 谷歌翻译
Optimal Transport(OT)提供了一个多功能框架,以几何有意义的方式比较复杂的数据分布。计算Wasserstein距离和概率措施之间的大地测量方法的传统方法需要网络依赖性域离散化,并且受差异性的诅咒。我们提出了Geonet,这是一个网状不变的深神经操作员网络,该网络从输入对的初始和终端分布对到Wasserstein Geodesic连接两个端点分布的非线性映射。在离线训练阶段,Geonet了解了以耦合PDE系统为特征的原始和双空间中OT问题动态提出的鞍点最佳条件。随后的推理阶段是瞬时的,可以在在线学习环境中进行实时预测。我们证明,Geonet在模拟示例和CIFAR-10数据集上达到了与标准OT求解器的可比测试精度,其推断阶段计算成本大大降低了。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
深度学习表明了视觉识别和某些人工智能任务的成功应用。深度学习也被认为是一种强大的工具,具有近似功能的高度灵活性。在本工作中,设计具有所需属性的功能,以近似PDE的解决方案。我们的方法基于后验误差估计,其中解决了错误定位以在神经网络框架内制定误差估计器的伴随问题。开发了一种高效且易于实现的算法,以通过采用双重加权剩余方法来获得多个目标功能的后验误差估计,然后使用神经网络计算原始和伴随解决方案。本研究表明,即使具有相对较少的训练数据,这种基于数据驱动的模型的学习具有卓越的感兴趣量的近似。用数值测试实施例证实了新颖的算法发展。证明了在浅神经网络上使用深神经网络的优点,并且还呈现了收敛增强技术
translated by 谷歌翻译
在本文中,我们提出了一种无网格的方法来解决完整的Stokes方程,该方程用非线性流变学模拟了冰川运动。我们的方法是受[12]中提出的深里兹方法的启发。我们首先将非牛顿冰流模型的解决方案提出到具有边界约束的变分积分的最小化器中。然后,通过一个深神经网络近似溶液,该网络的损失函数是变异积分加上混合边界条件的软约束。我们的方法不需要引入网格网格或基础函数来评估损失函数,而只需要统一的域和边界采样器。为了解决现实世界缩放中的不稳定性,我们将网络的输入重新归一致,并平衡每个单独边界的正则化因子。最后,我们通过几个数值实验说明了我们方法的性能,包括具有分析解决方案的2D模型,具有真实缩放的Arolla Glacier模型和具有周期性边界条件的3D模型。数值结果表明,我们提出的方法有效地解决了通过非线性流变学引起的冰川建模引起的非牛顿力学。
translated by 谷歌翻译
我们因与Relu神经网络的参数双曲标量保护定律的近似值所产生的误差得出了严格的界限。我们表明,通过克服维度诅咒的relu神经网络,可以使近似误差尽可能小。此外,我们在训练误差,训练样本数量和神经网络大小方面提供了明确的上限。理论结果通过数值实验说明。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
机器学习方法最近已用于求解微分方程和动态系统。这些方法已发展为一个新型的研究领域,称为科学机器学习,其中深层神经网络和统计学习等技术应用于应用数学的经典问题。由于神经网络提供了近似能力,因此在求解各种偏微分方程(PDE)时,通过机器学习和优化方法通过机器学习和优化方法实现了明显的性能。在本文中,我们开发了一种新颖的数值算法,该算法结合了机器学习和人工智能来解决PDE。特别是,我们基于Legendre-Galerkin神经网络提出了一种无监督的机器学习算法,以找到与不同类型PDE的解决方案的准确近似值。提出的神经网络应用于一般的1D和2D PDE,以及具有边界层行为的奇异扰动PDE。
translated by 谷歌翻译
部分微分方程通常用于模拟各种物理现象,例如热扩散,波传播,流体动力学,弹性,电动力学和图像处理,并且已经开发了许多分析方法或传统的数值方法并广泛用于其溶液。受深度学习对科学和工程研究的迅速影响的启发,在本文中,我们提出了一个新型的神经网络GF-NET,以无监督的方式学习绿色的线性反应扩散方程的功能。所提出的方法克服了通过使用物理信息的方法和绿色功能的对称性来查找任意域上方程函数的挑战。结果,它尤其导致了在不同边界条件和来源下解决目标方程的有效方法。我们还通过正方形,环形和L形域中的实验证明了所提出的方法的有效性。
translated by 谷歌翻译
复杂物理动态的建模和控制在真实问题中是必不可少的。我们提出了一种新颖的框架,通常适用于通过用特殊校正器引入PDE解决方案操作员的代理模型来解决PDE受约束的最佳控制问题。所提出的框架的过程分为两个阶段:解决PDE约束(阶段1)的解决方案操作员学习并搜索最佳控制(阶段2)。一旦替代模型在阶段1训练,就可以在没有密集计算的阶段2中推断出最佳控制。我们的框架可以应用于数据驱动和数据的案例。我们展示了我们对不同控制变量的各种最优控制问题的成功应用,从泊松方程到汉堡方程的不同PDE约束。
translated by 谷歌翻译
微分方程用于多种学科,描述了物理世界的复杂行为。这些方程式的分析解决方案通常很难求解,从而限制了我们目前求解复杂微分方程的能力,并需要将复杂的数值方法近似于解决方案。训练有素的神经网络充当通用函数近似器,能够以新颖的方式求解微分方程。在这项工作中,探索了神经网络算法在数值求解微分方程方面的方法和应用,重点是不同的损失函数和生物应用。传统损失函数和训练参数的变化显示出使神经网络辅助解决方案更有效的希望,从而可以调查更复杂的方程式管理生物学原理。
translated by 谷歌翻译
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了有关PDE的数值模拟的大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,与机器学习的经典数值技术的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们以基于傅立叶的光谱方法为基础,这些光谱方法比其他数值方案要高得多,以模拟使用平滑且周期性解决方案的PDE。具体而言,我们为流体动力学的三个模型PDE开发了ML增强的光谱求解器,从而提高了标准光谱求解器在相同分辨率下的准确性。我们还展示了一些关键设计原则,用于将机器学习和用于解决PDE的数值方法结合使用。
translated by 谷歌翻译