There is growing interest in automating neural network architecture design. Existing architecture search methods can be computationally expensive, requiring thousands of different architectures to be trained from scratch. Recent work has explored weight sharing across models to amortize the cost of training. Although previous methods reduced the cost of architecture search by orders of magnitude, they remain complex, requiring hypernetworks or reinforcement learning controllers. We aim to understand weight sharing for one-shot architecture search. With careful experimental analysis, we show that it is possible to efficiently identify promising architectures from a complex search space without either hypernetworks or RL.
translated by 谷歌翻译
Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-designed networks with learned, task-specific architectures. In this work, in order to help ground the empirical results in this field, we propose new NAS baselines that build off the following observations: (i) NAS is a specialized hyperparameter optimization problem; and (ii) random search is a competitive baseline for hyperparameter optimization. Leveraging these observations, we evaluate both random search with early-stopping and a novel random search with weight-sharing algorithm on two standard NAS benchmarks-PTB and CIFAR-10. Our results show that random search with early-stopping is a competitive NAS baseline, e.g., it performs at least as well as ENAS [41], a leading NAS method, on both benchmarks. Additionally, random search with weight-sharing outperforms random search with early-stopping, achieving a state-of-the-art NAS result on PTB and a highly competitive result on CIFAR-10. Finally, we explore the existing reproducibility issues of published NAS results. We note the lack of source material needed to exactly reproduce these results, and further discuss the robustness of published results given the various sources of variability in NAS experimental setups. Relatedly, we provide all information (code, random seeds, documentation) needed to exactly reproduce our results, and report our random search with weight-sharing results for each benchmark on multiple runs.
translated by 谷歌翻译
We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-based optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Direct comparison under the same search space shows that our method is up to 5 times more efficient than the RL method of Zoph et al. (2018) in terms of number of models evaluated, and 8 times faster in terms of total compute. The structures we discover in this way achieve state of the art classification accuracies on CIFAR-10 and ImageNet.
translated by 谷歌翻译
This paper addresses the scalability challenge of architecture search by formulating the task in a differentiable manner. Unlike conventional approaches of applying evolution or reinforcement learning over a discrete and non-differentiable search space, our method is based on the continuous relaxation of the architecture representation, allowing efficient search of the architecture using gradient descent. Extensive experiments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that our algorithm excels in discovering high-performance convolutional architectures for image classification and recurrent architectures for language modeling, while being orders of magnitude faster than state-of-the-art non-differentiable techniques. Our implementation has been made publicly available to facilitate further research on efficient architecture search algorithms.
translated by 谷歌翻译
Developing neural network image classification models often requires significant architecture engineering. In this paper, we study a method to learn the model architectures directly on the dataset of interest. As this approach is expensive when the dataset is large, we propose to search for an architectural building block on a small dataset and then transfer the block to a larger dataset. The key contribution of this work is the design of a new search space (which we call the "NASNet search space") which enables transferability. In our experiments, we search for the best convolutional layer (or "cell") on the CIFAR-10 dataset and then apply this cell to the ImageNet dataset by stacking together more copies of this cell, each with their own parameters to design a convolutional architecture, which we name a "NASNet architecture". We also introduce a new regularization technique called ScheduledDropPath that significantly improves generalization in the NASNet models. On CIFAR-10 itself, a NASNet found by our method achieves 2.4% error rate, which is state-of-the-art. Although the cell is not searched for directly on ImageNet, a NASNet constructed from the best cell achieves, among the published works, state-of-the-art accuracy of 82.7% top-1 and 96.2% top-5 on ImageNet. Our model is 1.2% better in top-1 accuracy than the best human-invented architectures while having 9 billion fewer FLOPS -a reduction of 28% in computational demand from the previous state-of-the-art model. When evaluated at different levels of computational cost, accuracies of NASNets exceed those of the state-of-the-art human-designed models. For instance, a small version of NASNet also achieves 74% top-1 accuracy, which is 3.1% better than equivalently-sized, state-of-the-art models for mobile platforms. Finally, the image features learned from image classification are generically useful and can be transferred to other computer vision problems. On the task of object detection, the learned features by NASNet used with the Faster-RCNN framework surpass state-of-the-art by 4.0% achieving 43.1% mAP on the COCO dataset.
translated by 谷歌翻译
Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and errorprone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.
translated by 谷歌翻译
We propose Efficient Neural Architecture Search (ENAS), a fast and inexpensive approach for automatic model design. ENAS constructs a large computational graph, where each subgraph represents a neural network architecture, hence forcing all architectures to share their parameters. A controller is trained with policy gradient to search for a subgraph that maximizes the expected reward on a validation set. Meanwhile a model corresponding to the selected subgraph is trained to minimize a canonical cross entropy loss. Sharing parameters among child models allows ENAS to deliver strong empirical performances, whilst using much fewer GPU-hours than existing automatic model design approaches, and notably, 1000x less expensive than standard Neural Architecture Search. On Penn Treebank, ENAS discovers a novel architecture that achieves a test perplexity of 56.3, on par with the existing state-of-the-art among all methods without post-training processing. On CIFAR-10, ENAS finds a novel architecture that achieves 2.89% test error, which is on par with the 2.65% test error of NASNet (Zoph et al., 2018).
translated by 谷歌翻译
We propose Efficient Neural Architecture Search (ENAS), a fast and inexpensive approach for automatic model design. In ENAS, a controller discovers neural network architectures by searching for an optimal subgraph within a large computational graph. The controller is trained with policy gradient to select a subgraph that maximizes the expected reward on a validation set. Meanwhile the model corresponding to the selected subgraph is trained to minimize a canonical cross entropy loss. Sharing parameters among child models allows ENAS to deliver strong empirical performances, while using much fewer GPUhours than existing automatic model design approaches, and notably, 1000x less expensive than standard Neural Architecture Search. On the Penn Treebank dataset, ENAS discovers a novel architecture that achieves a test perplexity of 55.8, establishing a new state-of-the-art among all methods without post-training processing. On the CIFAR-10 dataset, ENAS finds a novel architecture that achieves 2.89% test error, which is on par with the 2.65% test error of NAS-Net (Zoph et al., 2018).
translated by 谷歌翻译
Recent advances in neural architecture search (NAS) demand tremendous computational resources, which makes it difficult to reproduce experiments and imposes a barrier-to-entry to researchers without access to large-scale computation. We aim to ameliorate these problems by introducing NAS-Bench-101, the first public architecture dataset for NAS research. To build NAS-Bench-101, we carefully constructed a compact, yet expressive, search space, exploiting graph isomorphisms to identify 423k unique convolutional architectures. We trained and evaluated all of these architectures multiple times on CIFAR-10 and compiled the results into a large dataset of over 5 million trained models. This allows researchers to evaluate the quality of a diverse range of models in milliseconds by querying the precomputed dataset. We demonstrate its utility by analyzing the dataset as a whole and by benchmarking a range of architecture optimization algorithms.
translated by 谷歌翻译
The automated machine learning (AutoML) field has become increasingly relevant in recent years. These algorithms can develop models without the need for expert knowledge, facilitating the application of machine learning techniques in the industry. Neural Architecture Search (NAS) exploits deep learning techniques to autonomously produce neural network architectures whose results rival the state-of-the-art models hand-crafted by AI experts. However, this approach requires significant computational resources and hardware investments, making it less appealing for real-usage applications. This article presents the third version of Pareto-Optimal Progressive Neural Architecture Search (POPNASv3), a new sequential model-based optimization NAS algorithm targeting different hardware environments and multiple classification tasks. Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks. The algorithm employs Pareto optimality to reduce the number of architectures sampled during the search, drastically improving the time efficiency without loss in accuracy. The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
translated by 谷歌翻译
Neural networks have proven effective at solving difficult problems but designing their architectures can be challenging, even for image classification problems alone. Our goal is to minimize human participation, so we employ evolutionary algorithms to discover such networks automatically. Despite significant computational requirements, we show that it is now possible to evolve models with accuracies within the range of those published in the last year. Specifically, we employ simple evolutionary techniques at unprecedented scales to discover models for the CIFAR-10 and CIFAR-100 datasets, starting from trivial initial conditions and reaching accuracies of 94.6% (95.6% for ensemble) and 77.0%, respectively. To do this, we use novel and intuitive mutation operators that navigate large search spaces; we stress that no human participation is required once evolution starts and that the output is a fully-trained model. Throughout this work, we place special emphasis on the repeatability of results, the variability in the outcomes and the computational requirements.
translated by 谷歌翻译
深度学习领域的最新进展表明,非常大的神经网络在几种应用中的有效性。但是,随着这些深度神经网络的大小不断增长,配置其许多参数以获得良好的结果变得越来越困难。目前,分析师必须尝试许多不同的配置和参数设置,这些配置和参数设置是劳动密集型且耗时的。另一方面,没有人类专家的领域知识,用于神经网络架构搜索的完全自动化技术的能力受到限制。为了解决问题,我们根据单次体系结构搜索技术制定神经网络体系结构优化的任务作为图形空间探索。在这种方法中,对所有候选体系结构的超级绘制进行了一次训练,并将最佳神经网络确定为子图。在本文中,我们提出了一个框架,该框架允许分析师有效地构建解决方案子图形空间,并通过注入其域知识来指导网络搜索。从由基本神经网络组件组成的网络体系结构空间开始,分析师有权通过我们的单发搜索方案有效地选择最有希望的组件。以迭代方式应用此技术使分析师可以为给定应用程序收敛到最佳性能的神经网络体系结构。在探索过程中,分析师可以利用其域知识在搜索空间的散点图可视化中提供的线索来帮助编辑不同的组件,并指导搜索更快的融合。我们与几位深度学习研究人员合作设计了界面,并通过用户研究和两个案例研究来评估其最终有效性。
translated by 谷歌翻译
We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.Equal contribution. This work is done when Haoyuan Mu and Zechun Liu are interns at MEGVII Technology.
translated by 谷歌翻译
Neural architecture search (NAS) has a great impact by automatically designing effective neural network architectures. However, the prohibitive computational demand of conventional NAS algorithms (e.g. 10 4 GPU hours) makes it difficult to directly search the architectures on large-scale tasks (e.g. ImageNet). Differentiable NAS can reduce the cost of GPU hours via a continuous representation of network architecture but suffers from the high GPU memory consumption issue (grow linearly w.r.t. candidate set size). As a result, they need to utilize proxy tasks, such as training on a smaller dataset, or learning with only a few blocks, or training just for a few epochs. These architectures optimized on proxy tasks are not guaranteed to be optimal on the target task. In this paper, we present ProxylessNAS that can directly learn the architectures for large-scale target tasks and target hardware platforms. We address the high memory consumption issue of differentiable NAS and reduce the computational cost (GPU hours and GPU memory) to the same level of regular training while still allowing a large candidate set. Experiments on CIFAR-10 and ImageNet demonstrate the effectiveness of directness and specialization. On CIFAR-10, our model achieves 2.08% test error with only 5.7M parameters, better than the previous state-of-the-art architecture AmoebaNet-B, while using 6× fewer parameters. On ImageNet, our model achieves 3.1% better top-1 accuracy than MobileNetV2, while being 1.2× faster with measured GPU latency. We also apply ProxylessNAS to specialize neural architectures for hardware with direct hardware metrics (e.g. latency) and provide insights for efficient CNN architecture design. 1
translated by 谷歌翻译
现代神经结构搜索方法对几个学科进行了多次破坏最先进的结果。超级网络,许多这样的方法的中心组件,可以快速估计搜索空间中的任何架构的准确性或损失统计数据。它们包含所有候选架构的网络权重,因此可以通过应用各个操作来近似特定的。但是,这种设计忽略了连续操作之间的潜在依赖关系。我们将超级网络扩展到有条件的权重,这些重量取决于选择的组合并分析它们的效果。NAS - 台凳201和基于NAS - 台型宏的搜索空间的实验显示了架构选择的改进,并且资源开销几乎可以忽略不计,以便顺序网络设计。
translated by 谷歌翻译
The effort devoted to hand-crafting neural network image classifiers has motivated the use of architecture search to discover them automatically. Although evolutionary algorithms have been repeatedly applied to neural network topologies, the image classifiers thus discovered have remained inferior to human-crafted ones. Here, we evolve an image classifier-AmoebaNet-A-that surpasses hand-designs for the first time.To do this, we modify the tournament selection evolutionary algorithm by introducing an age property to favor the younger genotypes. Matching size, AmoebaNet-A has comparable accuracy to current state-of-the-art ImageNet models discovered with more complex architecture-search methods. Scaled to larger size, AmoebaNet-A sets a new state-of-theart 83.9% top-1 / 96.6% top-5 ImageNet accuracy. In a controlled comparison against a well known reinforcement learning algorithm, we give evidence that evolution can obtain results faster with the same hardware, especially at the earlier stages of the search. This is relevant when fewer compute resources are available. Evolution is, thus, a simple method to effectively discover high-quality architectures. Related WorkReview papers provide informative surveys of earlier [18,49] and more recent [15] literature on image classifier architecture search, including successful RL studies [2,6,29,[52][53][54] and evolutionary studies like those mentioned in 1 After our submission, a recent preprint has further scaled up and retrained AmoebaNet-A to reach 84.3% top-1 / 97.0% top-5 ImageNet accuracy [25].
translated by 谷歌翻译
虽然可分辨率的架构搜索(飞镖)已成为神经结构中的主流范例(NAS),因为其简单和效率,最近的作品发现,搜索架构的性能几乎可以随着飞镖的优化程序而增加,以及最终的大小由飞镖获得几乎无法表明运营的重要性。上述观察表明,飞镖中的监督信号可能是架构搜索的穷人或不可靠的指标,鼓励有趣和有趣的方向:我们可以衡量不可分辨率范式下的任何培训的运作重要性吗?我们通过在初始化问题的网络修剪中定制NAS提供肯定的答案。随着最近建议的突触突触效力标准在初始化的网络修剪中,我们寻求在没有任何培训的情况下将候选人行动中的候选人行动的重要性进行评分,并提出了一种名为“免费可分辨的架构搜索}(Freedarts)的小说框架” 。我们表明,没有任何培训,具有不同代理度量的自由路由器可以在不同的搜索空间中优于大多数NAS基线。更重要的是,Freedarts是非常内存的高效和计算效率,因为它放弃了架构搜索阶段的培训,使得能够在更灵活的空间上执行架构搜索并消除架构搜索和评估之间的深度间隙。我们希望我们的工作激励从初始化修剪的角度来激发解决NAS的尝试。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
Conventional neural architecture search (NAS) approaches are based on reinforcement learning or evolutionary strategy, which take more than 3000 GPU hours to find a good model on CIFAR-10. We propose an efficient NAS approach learning to search by gradient descent. Our approach represents the search space as a directed acyclic graph (DAG). This DAG contains billions of sub-graphs, each of which indicates a kind of neural architecture. To avoid traversing all the possibilities of the sub-graphs, we develop a differentiable sampler over the DAG. This sampler is learnable and optimized by the validation loss after training the sampled architecture. In this way, our approach can be trained in an end-to-end fashion by gradient descent, named Gradient-based search using Differentiable Architecture Sampler (GDAS). In experiments, we can finish one searching procedure in four GPU hours on CIFAR-10, and the discovered model obtains a test error of 2.82% with only 2.5M parameters, which is on par with the state-of-the-art. Code is publicly available on GitHub: https://github.com/D-X-Y/NAS-Projects.
translated by 谷歌翻译