现代神经结构搜索方法对几个学科进行了多次破坏最先进的结果。超级网络,许多这样的方法的中心组件,可以快速估计搜索空间中的任何架构的准确性或损失统计数据。它们包含所有候选架构的网络权重,因此可以通过应用各个操作来近似特定的。但是,这种设计忽略了连续操作之间的潜在依赖关系。我们将超级网络扩展到有条件的权重,这些重量取决于选择的组合并分析它们的效果。NAS - 台凳201和基于NAS - 台型宏的搜索空间的实验显示了架构选择的改进,并且资源开销几乎可以忽略不计,以便顺序网络设计。
translated by 谷歌翻译
Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-designed networks with learned, task-specific architectures. In this work, in order to help ground the empirical results in this field, we propose new NAS baselines that build off the following observations: (i) NAS is a specialized hyperparameter optimization problem; and (ii) random search is a competitive baseline for hyperparameter optimization. Leveraging these observations, we evaluate both random search with early-stopping and a novel random search with weight-sharing algorithm on two standard NAS benchmarks-PTB and CIFAR-10. Our results show that random search with early-stopping is a competitive NAS baseline, e.g., it performs at least as well as ENAS [41], a leading NAS method, on both benchmarks. Additionally, random search with weight-sharing outperforms random search with early-stopping, achieving a state-of-the-art NAS result on PTB and a highly competitive result on CIFAR-10. Finally, we explore the existing reproducibility issues of published NAS results. We note the lack of source material needed to exactly reproduce these results, and further discuss the robustness of published results given the various sources of variability in NAS experimental setups. Relatedly, we provide all information (code, random seeds, documentation) needed to exactly reproduce our results, and report our random search with weight-sharing results for each benchmark on multiple runs.
translated by 谷歌翻译
Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and errorprone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.
translated by 谷歌翻译
There is growing interest in automating neural network architecture design. Existing architecture search methods can be computationally expensive, requiring thousands of different architectures to be trained from scratch. Recent work has explored weight sharing across models to amortize the cost of training. Although previous methods reduced the cost of architecture search by orders of magnitude, they remain complex, requiring hypernetworks or reinforcement learning controllers. We aim to understand weight sharing for one-shot architecture search. With careful experimental analysis, we show that it is possible to efficiently identify promising architectures from a complex search space without either hypernetworks or RL.
translated by 谷歌翻译
The automated machine learning (AutoML) field has become increasingly relevant in recent years. These algorithms can develop models without the need for expert knowledge, facilitating the application of machine learning techniques in the industry. Neural Architecture Search (NAS) exploits deep learning techniques to autonomously produce neural network architectures whose results rival the state-of-the-art models hand-crafted by AI experts. However, this approach requires significant computational resources and hardware investments, making it less appealing for real-usage applications. This article presents the third version of Pareto-Optimal Progressive Neural Architecture Search (POPNASv3), a new sequential model-based optimization NAS algorithm targeting different hardware environments and multiple classification tasks. Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks. The algorithm employs Pareto optimality to reduce the number of architectures sampled during the search, drastically improving the time efficiency without loss in accuracy. The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
translated by 谷歌翻译
神经体系结构搜索(NAS)的主要挑战之一是有效地对体系结构的性能进行排名。绩效排名者的主流评估使用排名相关性(例如,肯德尔的tau),这对整个空间都同样关注。但是,NAS的优化目标是识别顶级体系结构,同时对搜索空间中其他体系结构的关注更少。在本文中,我们从经验和理论上都表明,标准化的累积累积增益(NDCG)对于排名者来说是一个更好的指标。随后,我们提出了一种新算法Acenas,该算法直接通过Lambdarank优化NDCG。它还利用体重共享NAS产生的弱标签来预先培训排名,以便进一步降低搜索成本。对12个NAS基准和大规模搜索空间进行的广泛实验表明,我们的方法始终超过SOTA NAS方法,精度提高了3.67%,搜索成本降低了8倍。
translated by 谷歌翻译
Recent advances in neural architecture search (NAS) demand tremendous computational resources, which makes it difficult to reproduce experiments and imposes a barrier-to-entry to researchers without access to large-scale computation. We aim to ameliorate these problems by introducing NAS-Bench-101, the first public architecture dataset for NAS research. To build NAS-Bench-101, we carefully constructed a compact, yet expressive, search space, exploiting graph isomorphisms to identify 423k unique convolutional architectures. We trained and evaluated all of these architectures multiple times on CIFAR-10 and compiled the results into a large dataset of over 5 million trained models. This allows researchers to evaluate the quality of a diverse range of models in milliseconds by querying the precomputed dataset. We demonstrate its utility by analyzing the dataset as a whole and by benchmarking a range of architecture optimization algorithms.
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
我们提出了三种新型的修剪技术,以提高推理意识到的可区分神经结构搜索(DNAS)的成本和结果。首先,我们介绍了DNA的随机双路构建块,它可以通过内存和计算复杂性在内部隐藏尺寸上进行搜索。其次,我们在搜索过程中提出了一种在超级网的随机层中修剪块的算法。第三,我们描述了一种在搜索过程中修剪不必要的随机层的新技术。由搜索产生的优化模型称为Prunet,并在Imagenet Top-1图像分类精度的推理潜伏期中为NVIDIA V100建立了新的最先进的Pareto边界。将Prunet作为骨架还优于COCO对象检测任务的GPUNET和EFIDENENET,相对于平均平均精度(MAP)。
translated by 谷歌翻译
在NAS领域中,可分构造的架构搜索是普遍存在的,因为它的简单性和效率,其中两个范例,多路径算法和单路径方法主导。多路径框架(例如,DARTS)是直观的,但遭受内存使用和培训崩溃。单路径方法(例如,e.g.gdas和proxylesnnas)减轻了内存问题并缩小了搜索和评估之间的差距,但牺牲了性能。在本文中,我们提出了一种概念上简单的且有效的方法来桥接这两个范式,称为相互意识的子图可差架构搜索(MSG-DAS)。我们框架的核心是一个可分辨动的Gumbel-Topk采样器,它产生多个互斥的单路径子图。为了缓解多个子图形设置所带来的Severer Skip-Connect问题,我们提出了一个Dropblock-Identity模块来稳定优化。为了充分利用可用的型号(超级网和子图),我们介绍了一种记忆高效的超净指导蒸馏,以改善培训。所提出的框架击中了灵活的内存使用和搜索质量之间的平衡。我们展示了我们在想象中和CIFAR10上的方法的有效性,其中搜索的模型显示了与最近的方法相当的性能。
translated by 谷歌翻译
We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.Equal contribution. This work is done when Haoyuan Mu and Zechun Liu are interns at MEGVII Technology.
translated by 谷歌翻译
可微分的架构搜索逐渐成为神经结构中的主流研究主题,以实现与早期NAS(基于EA的RL的)方法相比提高效率的能力。最近的可分辨率NAS还旨在进一步提高搜索效率,降低GPU记忆消耗,并解决“深度间隙”问题。然而,这些方法不再能够解决非微弱目标,更不用说多目标,例如性能,鲁棒性,效率和其他指标。我们提出了一个端到端的架构搜索框架,朝向非微弱的目标TND-NAS,具有在多目标NAs(MNA)中的不同NAS框架中的高效率的优点和兼容性的兼容性(MNA)。在可分辨率的NAS框架下,随着搜索空间的连续放松,TND-NAS具有在离散空间中优化的架构参数($ \ alpha $),同时通过$ \ alpha $逐步缩小超缩小的搜索策略。我们的代表性实验需要两个目标(参数,准确性),例如,我们在CIFAR10上实现了一系列高性能紧凑型架构(1.09米/ 3.3%,2.4M / 2.95%,9.57M / 2.54%)和CIFAR100(2.46 M / 18.3%,5.46 / 16.73%,12.88 / 15.20%)数据集。有利地,在现实世界的情景下(资源受限,平台专用),TND-NA可以方便地达到Pareto-Optimal解决方案。
translated by 谷歌翻译
神经体系结构搜索(NAS)最近在深度学习社区中变得越来越流行,主要是因为它可以提供一个机会,使感兴趣的用户没有丰富的专业知识,从而从深度神经网络(DNNS)的成功中受益。但是,NAS仍然很费力且耗时,因为在NAS的搜索过程中需要进行大量的性能估计,并且训练DNNS在计算上是密集的。为了解决NAS的主要局限性,提高NAS的效率对于NAS的设计至关重要。本文以简要介绍了NAS的一般框架。然后,系统地讨论了根据代理指标评估网络候选者的方法。接下来是对替代辅助NAS的描述,该NAS分为三个不同类别,即NAS的贝叶斯优化,NAS的替代辅助进化算法和NAS的MOP。最后,讨论了剩余的挑战和开放研究问题,并在这个新兴领域提出了有希望的研究主题。
translated by 谷歌翻译
深度学习领域的最新进展表明,非常大的神经网络在几种应用中的有效性。但是,随着这些深度神经网络的大小不断增长,配置其许多参数以获得良好的结果变得越来越困难。目前,分析师必须尝试许多不同的配置和参数设置,这些配置和参数设置是劳动密集型且耗时的。另一方面,没有人类专家的领域知识,用于神经网络架构搜索的完全自动化技术的能力受到限制。为了解决问题,我们根据单次体系结构搜索技术制定神经网络体系结构优化的任务作为图形空间探索。在这种方法中,对所有候选体系结构的超级绘制进行了一次训练,并将最佳神经网络确定为子图。在本文中,我们提出了一个框架,该框架允许分析师有效地构建解决方案子图形空间,并通过注入其域知识来指导网络搜索。从由基本神经网络组件组成的网络体系结构空间开始,分析师有权通过我们的单发搜索方案有效地选择最有希望的组件。以迭代方式应用此技术使分析师可以为给定应用程序收敛到最佳性能的神经网络体系结构。在探索过程中,分析师可以利用其域知识在搜索空间的散点图可视化中提供的线索来帮助编辑不同的组件,并指导搜索更快的融合。我们与几位深度学习研究人员合作设计了界面,并通过用户研究和两个案例研究来评估其最终有效性。
translated by 谷歌翻译
神经结构搜索(NAS)引起了日益增长的兴趣。为了降低搜索成本,最近的工作已经探讨了模型的重量分享,并在单枪NAS进行了重大进展。然而,已经观察到,单次模型精度较高的模型并不一定在独立培训时更好地执行更好。为了解决这个问题,本文提出了搜索空间的逐步自动设计,名为Pad-NAS。与超字幕中的所有层共享相同操作搜索空间的先前方法不同,我们根据操作修剪制定逐行搜索策略,并构建层面操作搜索空间。通过这种方式,Pad-NAS可以自动设计每层的操作,并在搜索空间质量和模型分集之间实现权衡。在搜索过程中,我们还考虑了高效神经网络模型部署的硬件平台约束。关于Imagenet的广泛实验表明我们的方法可以实现最先进的性能。
translated by 谷歌翻译
由于物体形状和图案(例如器官或肿瘤)的高可变性,3D医学图像的语义分割是一个具有挑战性的任务。鉴于最近在医学图像分割中深入学习的成功,已经引入了神经结构搜索(NAS)以查找高性能3D分段网络架构。但是,由于3D数据的大量计算要求和架构搜索的离散优化性质,之前的NAS方法需要很长的搜索时间或必要的连续放松,并且通常导致次优网络架构。虽然单次NAS可能会解决这些缺点,但其在分段域中的应用尚未在膨胀的多尺度多路径搜索空间中进行很好地研究。为了为医学图像分割启用一次性NAS,我们的方法名为Hypersegnas,介绍了通过结合建筑拓扑信息来帮助超级培训培训。在培训超级网络培训并在架构搜索期间引入开销时,可以删除这种超空头。我们表明,与以前的最先进的(SOTA)分割网络相比,Hypersegnas产生更好的表现和更直观的架构;此外,它可以在不同的计算限制下快速准确地找到良好的体系结构候选者。我们的方法是在医疗细分Decovaton(MSD)挑战的公共数据集上评估,并实现了SOTA表演。
translated by 谷歌翻译
单发神经架构搜索(NAS)的算法已被广泛用于减少计算消耗。但是,由于共享权重的子网之间的干扰,从这些算法训练的超级网络中继承的子网在精度排名中的一致性较差。为了解决这个问题,我们提出了一个从一声NAS到少数NAS的逐步培训超网络。在培训方案中,我们首先以一种单发的方式训练超级网络,然后通过将它们拆分为多subnetnet并逐渐训练超级网络。最后,我们的方法在CVPR2022中排名第四,第三轻量化NAS挑战赛1。我们的代码可在https://github.com/liujiawei23333/cvpr2022-nas-competition-track-1-4tholdoluty获得。
translated by 谷歌翻译
神经结构搜索(NAS)的成功受到过度计算要求的限制。虽然现代重量共享NAS方法,例如飞镖在单位数GPU天中可以完成搜索,但从共享权重中提取最终的最佳架构是众所周知的不可靠性。培训 - 速度估计(TSE),最近开发的普遍开发的普遍估计,以贝叶斯边缘似然解释的用来代替飞镖基于梯度优化的验证损失。这可以防止飞镖跳过连接崩溃,这显着提高了NASBench-201和原始飞镖搜索空间的性能。我们通过应用各种飞镖诊断来扩展这些结果,并显示不使用验证集产生的几种不寻常的行为。此外,我们的实验产生了在与操作选择相比,尽管通常在文献中受到有限的关注,但仍会产生对搜索性能的强烈影响的深度间隙和拓扑选择的具体示例。
translated by 谷歌翻译
Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture optimality depends on factors such as input resolution and target devices. However, existing approaches are too resource demanding for case-by-case redesigns. Also, previous work focuses primarily on reducing FLOPs, but FLOP count does not always reflect actual latency. To address these, we propose a differentiable neural architecture search (DNAS) framework that uses gradient-based methods to optimize Con-vNet architectures, avoiding enumerating and training individual architectures separately as in previous methods. FBNets (Facebook-Berkeley-Nets), a family of models discovered by DNAS surpass state-of-the-art models both designed manually and generated automatically. FBNet-B achieves 74.1% top-1 accuracy on ImageNet with 295M FLOPs and 23.1 ms latency on a Samsung S8 phone, 2.4x smaller and 1.5x faster than MobileNetV2-1.3[17] with similar accuracy. Despite higher accuracy and lower latency than MnasNet[20], we estimate FBNet-B's search cost is 420x smaller than MnasNet's, at only 216 GPUhours. Searched for different resolutions and channel sizes, FBNets achieve 1.5% to 6.4% higher accuracy than Mo-bileNetV2. The smallest FBNet achieves 50.2% accuracy and 2.9 ms latency (345 frames per second) on a Samsung S8. Over a Samsung-optimized FBNet, the iPhone-Xoptimized model achieves a 1.4x speedup on an iPhone X. FBNet models are open-sourced at https://github. com/facebookresearch/mobile-vision. * Work done while interning at Facebook.… Figure 1. Differentiable neural architecture search (DNAS) for ConvNet design. DNAS explores a layer-wise space that each layer of a ConvNet can choose a different block. The search space is represented by a stochastic super net. The search process trains the stochastic super net using SGD to optimize the architecture distribution. Optimal architectures are sampled from the trained distribution. The latency of each operator is measured on target devices and used to compute the loss for the super net.
translated by 谷歌翻译
高效的视频架构是在具有有限计算资源的设备上部署视频识别系统的关键。不幸的是,现有的视频架构通常是计算密集的,不适合这些应用。最近的X3D工作通过沿着多个轴扩展手工制作的图像架构,介绍了一系列高效的视频模型系列,例如空间,时间,宽度和深度。虽然在概念上的大空间中操作,但x3d一次搜索一个轴,并且仅探索了一组总共30个架构,这不足以探索空间。本文绕过了现有的2D架构,并直接搜索了一个细粒度空间中的3D架构,其中共同搜索了块类型,滤波器编号,扩展比和注意力块。采用概率性神经结构搜索方法来有效地搜索如此大的空间。动力学和某事物的评估 - 某事-V2基准确认我们的AutoX3D模型在类似的拖鞋中的准确性高达1.3%的准确性优于现有的模型,并在达到类似的性能时降低计算成本高达X1.74。
translated by 谷歌翻译