虽然可分辨率的架构搜索(飞镖)已成为神经结构中的主流范例(NAS),因为其简单和效率,最近的作品发现,搜索架构的性能几乎可以随着飞镖的优化程序而增加,以及最终的大小由飞镖获得几乎无法表明运营的重要性。上述观察表明,飞镖中的监督信号可能是架构搜索的穷人或不可靠的指标,鼓励有趣和有趣的方向:我们可以衡量不可分辨率范式下的任何培训的运作重要性吗?我们通过在初始化问题的网络修剪中定制NAS提供肯定的答案。随着最近建议的突触突触效力标准在初始化的网络修剪中,我们寻求在没有任何培训的情况下将候选人行动中的候选人行动的重要性进行评分,并提出了一种名为“免费可分辨的架构搜索}(Freedarts)的小说框架” 。我们表明,没有任何培训,具有不同代理度量的自由路由器可以在不同的搜索空间中优于大多数NAS基线。更重要的是,Freedarts是非常内存的高效和计算效率,因为它放弃了架构搜索阶段的培训,使得能够在更灵活的空间上执行架构搜索并消除架构搜索和评估之间的深度间隙。我们希望我们的工作激励从初始化修剪的角度来激发解决NAS的尝试。
translated by 谷歌翻译
近年来,可微弱的建筑搜索(飞镖)已经受到了大量的关注,主要是因为它通过重量分享和连续放松来显着降低计算成本。然而,更近期的作品发现现有的可分辨率NAS技术难以俯视幼稚基线,产生劣化架构作为搜索所需。本文通过将体系结构权重放入高斯分布,而不是直接优化架构参数,而不是直接优化架构参数,而是作为分布学习问题。通过利用自然梯度变分推理(NGVI),可以基于现有的码票来容易地优化架构分布而不会产生更多内存和计算消耗。我们展示了贝叶斯原则的可分解NAS如何益处,提高勘探和提高稳定性。 NAS-BENCH-201和NAS-BENCH-1SHOT1基准数据集的实验结果证实了所提出的框架可以制造的重要改进。此外,我们还在学习参数上只需简单地应用argmax,我们进一步利用了NAS中最近提出的无培训代理,从优化分布中汲取的组架构中选择最佳架构,从而实现最终的架构-ART在NAS-BENCH-201和NAS-BENCH-1SHOT1基准上的结果。我们在飞镖搜索空间中的最佳架构也会分别获得2.37 \%,15.72 \%和24.2 \%的竞争性测试错误,分别在Cifar-10,CiFar-100和Imagenet数据集上。
translated by 谷歌翻译
在本文中,我们提出了一种基于沙普利价值的方法来评估用于神经体系结构搜索的操作贡献(Shapley-NAS)。可区分的体系结构搜索(DARTS)通过使用梯度下降优化体系结构参数来获取最佳体系结构,从而大大降低了搜索成本。但是,梯度下降更新的体系结构参数的幅度未能揭示对任务性能的实际操作重要性,因此损害了获得的体系结构的有效性。相比之下,我们建议评估操作对验证准确性的直接影响。为了处理超级核成分之间的复杂关系,我们通过考虑所有可能的组合来利用Shapley的价值来量化其边际贡献。具体而言,我们通过Shapley值评估操作贡献来迭代优化SuperNet权重,并更新体系结构参数,从而通过选择对任务贡献显着贡献的操作来得出最佳体系结构。由于Shapley值的确切计算是NP-HARD,因此采用了基于早期截断的蒙特卡洛抽样算法进行有效的近似,并且采用了动量更新机制来减轻采样过程的波动。在各种数据集和各种搜索空间上进行的广泛实验表明,我们的Shapley-NAS的表现优于最先进的方法,并具有相当大的利润,并具有轻盈的搜索成本。该代码可从https://github.com/euphoria16/shapley-nas.git获得
translated by 谷歌翻译
可区分的架构搜索(飞镖)大大促进了NAS技术的发展,因为其搜索效率很高,但遭受了性能崩溃的影响。在本文中,我们努力从两个方面减轻飞镖的性能崩溃问题。首先,我们研究了飞镖中超级网的表达能力,然后仅使用训练batchnorm来得出新的飞镖范式设置。其次,从理论上讲,随机特征稀释了跳过连接在超网优化中的辅助连接作用,并使搜索算法专注于更公平的操作选择,从而解决了性能崩溃问题。我们具有随机功能的实例化飞镖和PC-Darts,分别为每个命名的RF-Darts和RF-PCDART构建一个改进的版本。实验结果表明,RF-darts在CIFAR-10上获得\ TextBf {94.36 \%}测试精度(这是NAS Bench-201的最接近最佳结果),并实现了最新的最新最先进的TOP-1从CIFAR-10传输时,ImageNet上\ TextBf {24.0 \%}的测试错误。此外,RF-DARTS在三个数据集(CIFAR-10,CIFAR-100和SVHN)和四个搜索空间(S1-S4)上进行稳健性能。此外,RF-PCDARTS在Imagenet上取得了更好的结果,即\ textbf {23.9 \%} top-1和\ textbf {7.1 \%} top-5 top-5测试错误,超越了代表性的方法,例如单路径,训练免费, ,直接在Imagenet上搜索部分通道范例。
translated by 谷歌翻译
边缘设备上卷积神经网络(CNN)的部署受到性能要求和可用处理能力之间的巨大差距的阻碍。尽管最近的研究在开发网络修剪方法以减少CNN的计算开销方面取得了长足的进步,但仍然存在相当大的准确性损失,尤其是在高修剪比率下。质疑为非封闭网络设计的架构可能对修剪网络没有效,我们建议通过定义新的搜索空间和新颖的搜索目标来搜索架构修剪方法。为了改善修剪网络的概括,我们提出了两个新型的原始孔和prunedlinearaare操作。具体而言,这些操作通过正规化修剪网络的目标函数来缓解不稳定梯度的问题。提出的搜索目标使我们能够培训有关修剪权重元素的体系结构参数。定量分析表明,我们的搜索架构优于在CIFAR-10和Imagenet上最先进的修剪网络中使用的体系结构。就硬件效率而言,PR-DARTS将Mobilenet-V2的准确性从73.44%提高到81.35%(+7.91%提高),并且运行3.87 $ \ times $的速度更快。
translated by 谷歌翻译
This work targets designing a principled and unified training-free framework for Neural Architecture Search (NAS), with high performance, low cost, and in-depth interpretation. NAS has been explosively studied to automate the discovery of top-performer neural networks, but suffers from heavy resource consumption and often incurs search bias due to truncated training or approximations. Recent NAS works start to explore indicators that can predict a network's performance without training. However, they either leveraged limited properties of deep networks, or the benefits of their training-free indicators are not applied to more extensive search methods. By rigorous correlation analysis, we present a unified framework to understand and accelerate NAS, by disentangling "TEG" characteristics of searched networks - Trainability, Expressivity, Generalization - all assessed in a training-free manner. The TEG indicators could be scaled up and integrated with various NAS search methods, including both supernet and single-path approaches. Extensive studies validate the effective and efficient guidance from our TEG-NAS framework, leading to both improved search accuracy and over 56% reduction in search time cost. Moreover, we visualize search trajectories on three landscapes of "TEG" characteristics, observing that while a good local minimum is easier to find on NAS-Bench-201 given its simple topology, balancing "TEG" characteristics is much harder on the DARTS search space due to its complex landscape geometry. Our code is available at https://github.com/VITA-Group/TEGNAS.
translated by 谷歌翻译
Deep neural networks (DNNs) are found to be vulnerable to adversarial attacks, and various methods have been proposed for the defense. Among these methods, adversarial training has been drawing increasing attention because of its simplicity and effectiveness. However, the performance of the adversarial training is greatly limited by the architectures of target DNNs, which often makes the resulting DNNs with poor accuracy and unsatisfactory robustness. To address this problem, we propose DSARA to automatically search for the neural architectures that are accurate and robust after adversarial training. In particular, we design a novel cell-based search space specially for adversarial training, which improves the accuracy and the robustness upper bound of the searched architectures by carefully designing the placement of the cells and the proportional relationship of the filter numbers. Then we propose a two-stage search strategy to search for both accurate and robust neural architectures. At the first stage, the architecture parameters are optimized to minimize the adversarial loss, which makes full use of the effectiveness of the adversarial training in enhancing the robustness. At the second stage, the architecture parameters are optimized to minimize both the natural loss and the adversarial loss utilizing the proposed multi-objective adversarial training method, so that the searched neural architectures are both accurate and robust. We evaluate the proposed algorithm under natural data and various adversarial attacks, which reveals the superiority of the proposed method in terms of both accurate and robust architectures. We also conclude that accurate and robust neural architectures tend to deploy very different structures near the input and the output, which has great practical significance on both hand-crafting and automatically designing of accurate and robust neural architectures.
translated by 谷歌翻译
神经体系结构搜索(NAS)是自动化有效图像处理DNN设计的强大工具。该排名已被倡导为NAS设计有效的性能预测指标。先前的对比方法通过比较架构对并预测其相对性能来解决排名问题。但是,它仅关注两个相关建筑之间的排名,而忽略了搜索空间的整体质量分布,这可能会遇到概括性问题。提出了一个预测因子,即专注于特定体系结构的全球质量层的神经体系结构排名,以解决由当地观点引起的此类问题。 NAR在全球范围内探索搜索空间的质量层,并根据其全球排名将每个人分类为他们所属的层。因此,预测变量获得了搜索空间的性能分布的知识,这有助于更轻松地将其排名能力推广到数据集。同时,全球质量分布通过根据质量层的统计数据直接对候选者进行采样,从而促进了搜索阶段,而质量层的统计数据没有培训搜索算法,例如增强型学习(RL)或进化算法(EA),因此简化了NAS管道并保存计算开销。拟议的NAR比在两个广泛使用的NAS研究数据集上的最先进方法取得了更好的性能。在NAS-Bench-101的庞大搜索空间中,NAR可以轻松地找到具有最高0.01 $ \ unicode {x2030} $ performance的架构。它还可以很好地概括为NAS Bench-201的不同图像数据集,即CIFAR-10,CIFAR-100和Imagenet-16-120,通过识别每个它们的最佳体系结构。
translated by 谷歌翻译
神经建筑搜索(NAS)算法可节省人类专家的巨大劳动。最近的进步进一步将计算开销降低到负担得起的水平。但是,由于挑剔的程序和监督的学习范式,将NAS技术部署在现实世界应用程序中仍然很麻烦。在这项工作中,我们通过允许自我审议并保留在搜索阶段发现的伴随的权重,提出了自我监管和举重的神经体系结构搜索(SSWP-NAS)作为当前NAS框架的扩展。因此,我们将NAS的工作流程简化为单阶段和无代理程序。实验表明,通过所提出的框架搜索的架构实现了CIFAR-10,CIFAR-100和Imagenet数据集上的最新精度,而无需使用手动标签。此外,我们表明,使用伴随的权重作为初始化始终优于随机初始化和两阶段的权重预训练方法,在半监督的学习方案下清晰的边缘。代码可在https://github.com/lzvv123456/sswp-nas上公开获得。
translated by 谷歌翻译
现有的神经结构搜索算法主要在具有短距离连接的搜索空间上。我们争辩说,这种设计虽然安全稳定,障碍搜索算法从探索更复杂的情景。在本文中,我们在具有长距离连接的复杂搜索空间上构建搜索算法,并显示现有的权重共享搜索算法由于存在\ TextBF {交织连接}而大部分失败。基于观察,我们介绍了一个名为\ textbf {if-nas}的简单且有效的算法,在那里我们在搜索过程中执行定期采样策略来构建不同的子网,避免在任何中的交织连接出现。在所提出的搜索空间中,IF-NAS优于随机采样和先前的重量共享搜索算法,通过显着的余量。 IF-NAS还推广到微单元的空间,这些空间更容易。我们的研究强调了宏观结构的重要性,我们期待沿着这个方向进一步努力。
translated by 谷歌翻译
This paper addresses the scalability challenge of architecture search by formulating the task in a differentiable manner. Unlike conventional approaches of applying evolution or reinforcement learning over a discrete and non-differentiable search space, our method is based on the continuous relaxation of the architecture representation, allowing efficient search of the architecture using gradient descent. Extensive experiments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that our algorithm excels in discovering high-performance convolutional architectures for image classification and recurrent architectures for language modeling, while being orders of magnitude faster than state-of-the-art non-differentiable techniques. Our implementation has been made publicly available to facilitate further research on efficient architecture search algorithms.
translated by 谷歌翻译
可区分架构搜索(飞镖)是基于解决双重优化问题的数据驱动神经网络设计的有效方法。尽管在许多体系结构搜索任务中取得了成功,但仍然担心一阶飞镖的准确性和二阶飞镖的效率。在本文中,我们制定了单个级别的替代方案和放松的体系结构搜索(RARTS)方法,该方法通过数据和网络拆分利用整个数据集在体系结构学习中,而无需涉及相应损失功能(如飞镖)的混合第二个衍生物。在我们制定网络拆分的过程中,两个具有不同但相关权重的网络在寻找共享体系结构时进行了合作。 RART比飞镖的优势通过收敛定理和可解析的模型证明是合理的。此外,RART在准确性和搜索效率方面优于飞镖及其变体,如足够的实验结果所示。对于搜索拓扑结构(即边缘和操作)的任务,RART获得了比CIFAR-10上的二阶Darts更高的精度和60 \%的计算成本降低。转移到Imagenet时,RART继续超越表演飞镖,并且与最近的飞镖变体相提并论,尽管我们的创新纯粹是在训练算法上,而无需修改搜索空间。对于搜索宽度的任务,即卷积层中的频道数量,RARTS还优于传统的网络修剪基准。关于公共体系结构搜索基准等NATS BENCH的进一步实验也支持RARTS的优势。
translated by 谷歌翻译
Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-designed networks with learned, task-specific architectures. In this work, in order to help ground the empirical results in this field, we propose new NAS baselines that build off the following observations: (i) NAS is a specialized hyperparameter optimization problem; and (ii) random search is a competitive baseline for hyperparameter optimization. Leveraging these observations, we evaluate both random search with early-stopping and a novel random search with weight-sharing algorithm on two standard NAS benchmarks-PTB and CIFAR-10. Our results show that random search with early-stopping is a competitive NAS baseline, e.g., it performs at least as well as ENAS [41], a leading NAS method, on both benchmarks. Additionally, random search with weight-sharing outperforms random search with early-stopping, achieving a state-of-the-art NAS result on PTB and a highly competitive result on CIFAR-10. Finally, we explore the existing reproducibility issues of published NAS results. We note the lack of source material needed to exactly reproduce these results, and further discuss the robustness of published results given the various sources of variability in NAS experimental setups. Relatedly, we provide all information (code, random seeds, documentation) needed to exactly reproduce our results, and report our random search with weight-sharing results for each benchmark on multiple runs.
translated by 谷歌翻译
神经结构搜索(NAS)引起了日益增长的兴趣。为了降低搜索成本,最近的工作已经探讨了模型的重量分享,并在单枪NAS进行了重大进展。然而,已经观察到,单次模型精度较高的模型并不一定在独立培训时更好地执行更好。为了解决这个问题,本文提出了搜索空间的逐步自动设计,名为Pad-NAS。与超字幕中的所有层共享相同操作搜索空间的先前方法不同,我们根据操作修剪制定逐行搜索策略,并构建层面操作搜索空间。通过这种方式,Pad-NAS可以自动设计每层的操作,并在搜索空间质量和模型分集之间实现权衡。在搜索过程中,我们还考虑了高效神经网络模型部署的硬件平台约束。关于Imagenet的广泛实验表明我们的方法可以实现最先进的性能。
translated by 谷歌翻译
在NAS领域中,可分构造的架构搜索是普遍存在的,因为它的简单性和效率,其中两个范例,多路径算法和单路径方法主导。多路径框架(例如,DARTS)是直观的,但遭受内存使用和培训崩溃。单路径方法(例如,e.g.gdas和proxylesnnas)减轻了内存问题并缩小了搜索和评估之间的差距,但牺牲了性能。在本文中,我们提出了一种概念上简单的且有效的方法来桥接这两个范式,称为相互意识的子图可差架构搜索(MSG-DAS)。我们框架的核心是一个可分辨动的Gumbel-Topk采样器,它产生多个互斥的单路径子图。为了缓解多个子图形设置所带来的Severer Skip-Connect问题,我们提出了一个Dropblock-Identity模块来稳定优化。为了充分利用可用的型号(超级网和子图),我们介绍了一种记忆高效的超净指导蒸馏,以改善培训。所提出的框架击中了灵活的内存使用和搜索质量之间的平衡。我们展示了我们在想象中和CIFAR10上的方法的有效性,其中搜索的模型显示了与最近的方法相当的性能。
translated by 谷歌翻译
神经结构搜索(NAS)的成功受到过度计算要求的限制。虽然现代重量共享NAS方法,例如飞镖在单位数GPU天中可以完成搜索,但从共享权重中提取最终的最佳架构是众所周知的不可靠性。培训 - 速度估计(TSE),最近开发的普遍开发的普遍估计,以贝叶斯边缘似然解释的用来代替飞镖基于梯度优化的验证损失。这可以防止飞镖跳过连接崩溃,这显着提高了NASBench-201和原始飞镖搜索空间的性能。我们通过应用各种飞镖诊断来扩展这些结果,并显示不使用验证集产生的几种不寻常的行为。此外,我们的实验产生了在与操作选择相比,尽管通常在文献中受到有限的关注,但仍会产生对搜索性能的强烈影响的深度间隙和拓扑选择的具体示例。
translated by 谷歌翻译
Neural Architecture Search (NAS) is an automatic technique that can search for well-performed architectures for a specific task. Although NAS surpasses human-designed architecture in many fields, the high computational cost of architecture evaluation it requires hinders its development. A feasible solution is to directly evaluate some metrics in the initial stage of the architecture without any training. NAS without training (WOT) score is such a metric, which estimates the final trained accuracy of the architecture through the ability to distinguish different inputs in the activation layer. However, WOT score is not an atomic metric, meaning that it does not represent a fundamental indicator of the architecture. The contributions of this paper are in three folds. First, we decouple WOT into two atomic metrics which represent the distinguishing ability of the network and the number of activation units, and explore better combination rules named (Distinguishing Activation Score) DAS. We prove the correctness of decoupling theoretically and confirmed the effectiveness of the rules experimentally. Second, in order to improve the prediction accuracy of DAS to meet practical search requirements, we propose a fast training strategy. When DAS is used in combination with the fast training strategy, it yields more improvements. Third, we propose a dataset called Darts-training-bench (DTB), which fills the gap that no training states of architecture in existing datasets. Our proposed method has 1.04$\times$ - 1.56$\times$ improvements on NAS-Bench-101, Network Design Spaces, and the proposed DTB.
translated by 谷歌翻译
许多现有的神经结构搜索(NAS)解决方案依赖于架构评估的下游培训,这需要巨大的计算。考虑到这些计算带来了大量碳足迹,本文旨在探索绿色(即环保)NAS解决方案,可以在不培训的情况下评估架构。直观地,由架构本身引起的梯度,直接决定收敛和泛化结果。它激励我们提出梯度内核假设:梯度可以用作下游训练的粗粒粒度,以评估随机初始化网络。为了支持假设,我们进行理论分析,找到一个实用的梯度内核,与培训损失和验证性能有良好的相关性。根据这一假设,我们提出了一种新的基于内核的架构搜索方法knas。实验表明,KNA可实现比图像分类任务的“火车-TER-TEST”范式更快地实现竞争力。此外,极低的搜索成本使其具有广泛的应用。搜索网络还优于两个文本分类任务的强大基线Roberta-Light。代码可用于\ url {https://github.com/jingjing-nlp/knas}。
translated by 谷歌翻译
神经体系结构搜索(NAS)的关键挑战是迅速推断了广泛的网络的预测性能,以发现统计准确和计算高效的网络。我们将此任务称为模型性能推断(MPI)。当前的有效MPI实践是基于梯度的方法,可利用网络初始化的梯度来推断其性能。但是,现有的基于梯度的方法仅依赖启发式指标,并且缺乏必要的理论基础来巩固其设计。我们提出了GradSign,一种准确,简单且灵活的指标,用于使用理论见解的模型性能推断。 GradSign背后的关键思想是一个数量{\ psi},以分析单个训练样本粒度下不同网络的优化格局。从理论上讲,我们表明,在合理的假设下,网络的培训和真实的人口损失都由{\ psi}在相称的上限。此外,我们设计了GradSign,使用在随机初始化状态下评估的网络梯度对{\ psi}进行精确而简单的近似。对三个培训数据集的七个NAS基准进行评估表明,毕业生对现实世界的网络很好地推广,并且始终优于Spearman的{\ rho}和Kendall's Tau评估的基于最新的基于梯度的MPI。此外,我们将GradSign集成到四种现有的NAS算法中,并表明,通过将最佳发现网络的准确性提高高达0.3%,1.1%和1.0%,这三个现实世界任务的精确度提高了毕业生辅助的NAS算法的表现优于其香草。 。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译