深度神经网络通过解决了许多以前被视为更高人类智能的任务解锁了广泛的新应用。实现这一成功的一个发展之一是由专用硬件提供的计算能力提升,例如图形或张量处理单元。但是,这些不利用神经网络等并行性和模拟状态变量的基本特征。相反,它们模拟了依赖于二元计算的神经网络,这导致不可持续的能量消耗和相对低的速度。完全平行和模拟硬件承诺克服这些挑战,但模拟神经元噪声的影响及其传播,即积累,威胁到威胁这些方法无能为力。在这里,我们首次确定噪声在训练的完全连接层中包含噪声非线性神经元的深神经网络中的噪声传播。我们研究了添加剂和乘法以及相关和不相关的噪声,以及开发预测因对称深神经网络的任何层中的噪声水平的分析方法,或者在训练中培训的对称深神经网络或深神经网络。我们发现噪声累积通常绑定,并且添加附加网络层不会使信号与超出限制的信噪比恶化。最重要的是,当神经元激活函数具有小于单位的斜率时,可以完全抑制噪声累积。因此,我们开发了在模拟系统中实现的完全连接的深神经网络中的噪声框架,并识别允许工程师设计噪声弹性新型神经网络硬件的标准。
translated by 谷歌翻译
Understanding the functional principles of information processing in deep neural networks continues to be a challenge, in particular for networks with trained and thus non-random weights. To address this issue, we study the mapping between probability distributions implemented by a deep feed-forward network. We characterize this mapping as an iterated transformation of distributions, where the non-linearity in each layer transfers information between different orders of correlation functions. This allows us to identify essential statistics in the data, as well as different information representations that can be used by neural networks. Applied to an XOR task and to MNIST, we show that correlations up to second order predominantly capture the information processing in the internal layers, while the input layer also extracts higher-order correlations from the data. This analysis provides a quantitative and explainable perspective on classification.
translated by 谷歌翻译
过去十年来,人们对人工智能(AI)的兴趣激增几乎完全由人工神经网络(ANN)的进步驱动。尽管ANN为许多以前棘手的问题设定了最先进的绩效,但它们需要大量的数据和计算资源进行培训,并且由于他们采用了监督的学习,他们通常需要知道每个培训示例的正确标记的响应,并限制它们对现实世界域的可扩展性。尖峰神经网络(SNN)是使用更多类似脑部神经元的ANN的替代方法,可以使用无监督的学习来发现输入数据中的可识别功能,而又不知道正确的响应。但是,SNN在动态稳定性方面挣扎,无法匹配ANN的准确性。在这里,我们展示了SNN如何克服文献中发现的许多缺点,包括为消失的尖峰问题提供原则性解决方案,以优于所有现有的浅SNN,并等于ANN的性能。它在使用无标记的数据和仅1/50的训练时期使用无监督的学习时完成了这一点(标记数据仅用于最终的简单线性读数层)。该结果使SNN成为可行的新方法,用于使用未标记的数据集快速,准确,有效,可解释的机器学习。
translated by 谷歌翻译
深神经网络(DNN)是用于压缩和蒸馏信息的强大工具。由于它们的规模和复杂性,通常涉及数十亿间相互作用的内部自由度,精确分析方法通常会缩短。这种情况下的共同策略是识别平均潜在的快速微观变量的不稳定行为的缓慢自由度。在这里,我们在训练结束时识别在过度参数化的深卷积神经网络(CNNS)中发生的尺度的分离。它意味着神经元预激活与几乎高斯的方式与确定性潜在内核一起波动。在对于具有无限许多频道的CNN来说,这些内核是惰性的,对于有限的CNNS,它们以分析的方式通过数据适应和学习数据。由此产生的深度学习的热力学理论产生了几种深度非线性CNN玩具模型的准确预测。此外,它还提供了新的分析和理解CNN的方法。
translated by 谷歌翻译
了解不同网络架构的能力和局限性对机器学习的根本重要性。高斯工艺的贝叶斯推断已被证明是一种可行的方法,用于研究无限层宽度的反复和深网络,$ n \ infty $。在这里,我们通过采用来自无序系统的统计物理学的建立方法,从第一个原则开始的架构的统一和系统的衍生均衡和系统的推导。该理论阐明了,虽然平均场方程关于其时间结构不同,但是当读出分别在单个时间点或层拍摄时,它们却产生相同的高斯核。贝叶斯推理应用于分类,然后预测两种架构的相同性能和能力。在数值上,我们发现朝向平均场理论的收敛通常对复发网络的速度较慢,而不是对于深网络,并且收敛速度仅取决于前面的重量的参数以及时间步骤的参数。我们的方法公开了高斯进程,但系统扩展的最低阶数为1 / N $。因此,形式主义铺平了调查有限宽度$ N $的经常性和深层架构之间的根本差异。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
在概述中,引入了通用数学对象(映射),并解释了其与模型物理参数化的关系。引入了可用于模拟和/或近似映射的机器学习(ML)工具。ML的应用在模拟现有参数化,开发新的参数化,确保物理约束和控制开发应用程序的准确性。讨论了一些允许开发人员超越标准参数化范式的ML方法。
translated by 谷歌翻译
经常性神经网络(RNNS)是强大的动态模型,广泛用于机器学习(ML)和神经科学。之前的理论作品集中在具有添加剂相互作用的RNN上。然而,门控 - 即乘法 - 相互作用在真神经元中普遍存在,并且也是ML中最佳性能RNN的中心特征。在这里,我们表明Gating提供灵活地控制集体动态的两个突出特征:i)时间尺寸和ii)维度。栅极控制时间尺度导致新颖的稳定状态,网络用作灵活积分器。与以前的方法不同,Gating允许这种重要功能而没有参数微调或特殊对称。门还提供一种灵活的上下文相关机制来重置存储器跟踪,从而补充存储器功能。调制维度的栅极可以诱导新颖的不连续的混沌转变,其中输入将稳定的系统推向强的混沌活动,与通常稳定的输入效果相比。在这种转变之上,与添加剂RNN不同,关键点(拓扑复杂性)的增殖与混沌动力学的外观解耦(动态复杂性)。丰富的动态总结在相图中,从而为ML从业者提供了一个原理参数初始化选择的地图。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
ising机器是一个有前途的非von-neumann用于神经网络训练和组合优化的计算概念。然而,虽然可以用诸如展示机器实现各种神经网络,但是它们无法执行快速统计采样使得它们与数字计算机相比训练这些神经网络的效率低。在这里,我们通过注入模拟噪声来介绍一个通用概念,以实现具有ising机器的超快统计抽样。通过光电型机,我们证明这可用于精确采样Boltzmann分布和无监督的神经网络训练,具有与基于软件的培训等于准确性。通过模拟,我们发现ising机器可以比基于软件的方法更快地执行统计采样顺序。这使得Ising Machines成为机器学习的有效工具和超出组合优化的其他应用。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
我们训练神经形态硬件芯片以通过变分能最小化近似Quantum旋转模型的地面状态。与使用马尔可夫链蒙特卡罗进行样品生成的变分人工神经网络相比,这种方法具有优点:神经形态器件以快速和固有的并行方式产生样品。我们开发培训算法,并将其应用于横向场介绍模型,在中等系统尺寸下显示出良好的性能($ n \ LEQ 10 $)。系统的普遍开心研究表明,较大系统尺寸的可扩展性主要取决于样品质量,该样品质量受到模拟神经芯片上的参数漂移的限制。学习性能显示阈值行为作为ansatz的变分参数的数量的函数,大约为50美元的隐藏神经元,足以表示关键地位,最高$ n = 10 $。网络参数的6 + 1位分辨率不会限制当前设置中的可达近似质量。我们的工作为利用神经形态硬件的能力提供了一种重要的一步,以解决量子数量问题中的维数诅咒。
translated by 谷歌翻译
人工神经网络的许多现代应用随之而来的是大量层,使传统的数字实施越来越复杂。光学神经网络在高带宽处提供并行处理,但面临噪声积累的挑战。我们在这里提出了一种新型的神经网络,使用随机共振作为体系结构的固有部分,并证明了以给定性能准确性大量减少所需神经元数量的可能性。我们还表明,这种神经网络对噪声的影响更强大。
translated by 谷歌翻译
虽然注意力成为深度学习的重要机制,但仍然有限的直觉,为什么它工作得很好。在这里,我们表明,在某些数据条件下,变压器注意力与Kanerva稀疏分布式内存(SDM)的某些数据条件密切相关,一种生物合理的关联内存模型。我们确认在预先培训的GPT2变压器模型中满足这些条件。我们讨论了注意力SDM地图的影响,并提供了对关注的新计算和生物学解释。
translated by 谷歌翻译
预测性编码提供了对皮质功能的潜在统一说明 - 假设大脑的核心功能是最小化有关世界生成模型的预测错误。该理论与贝叶斯大脑框架密切相关,在过去的二十年中,在理论和认知神经科学领域都产生了重大影响。基于经验测试的预测编码的改进和扩展的理论和数学模型,以及评估其在大脑中实施的潜在生物学合理性以及该理论所做的具体神经生理学和心理学预测。尽管存在这种持久的知名度,但仍未对预测编码理论,尤其是该领域的最新发展进行全面回顾。在这里,我们提供了核心数学结构和预测编码的逻辑的全面综述,从而补充了文献中最新的教程。我们还回顾了该框架中的各种经典和最新工作,从可以实施预测性编码的神经生物学现实的微电路到预测性编码和广泛使用的错误算法的重新传播之间的紧密关系,以及对近距离的调查。预测性编码和现代机器学习技术之间的关系。
translated by 谷歌翻译
尖峰神经网络(SNN)提供了一个新的计算范式,能够高度平行,实时处理。光子设备是设计与SNN计算范式相匹配的高带宽,平行体系结构的理想选择。 CMO和光子元件的协整允许将低损耗的光子设备与模拟电子设备结合使用,以更大的非线性计算元件的灵活性。因此,我们在整体硅光子学(SIPH)过程上设计和模拟了光电尖峰神经元电路,该过程复制了超出泄漏的集成和火(LIF)之外有用的尖峰行为。此外,我们探索了两种学习算法,具有使用Mach-Zehnder干涉法(MZI)网格作为突触互连的片上学习的潜力。实验证明了随机反向传播(RPB)的变体,并在简单分类任务上与标准线性回归的性能相匹配。同时,将对比性HEBBIAN学习(CHL)规则应用于由MZI网格组成的模拟神经网络,以进行随机输入输出映射任务。受CHL训练的MZI网络的性能比随机猜测更好,但不符合理想神经网络的性能(没有MZI网格施加的约束)。通过这些努力,我们证明了协调的CMO和SIPH技术非常适合可扩展的SNN计算体系结构的设计。
translated by 谷歌翻译
平衡传播(EP)是返回传播(BP)的替代方法,它允许使用本地学习规则训练深层神经网络。因此,它为训练神经形态系统和了解神经生物学的学习提供了一个令人信服的框架。但是,EP需要无限的教学信号,从而限制其在嘈杂的物理系统中的适用性。此外,该算法需要单独的时间阶段,并且尚未应用于大规模问题。在这里,我们通过将EP扩展到全体形态网络来解决这些问题。我们分析表明,即使对于有限振幅教学信号,这种扩展也会自然导致精确的梯度。重要的是,可以将梯度计算为在连续时间内有限神经元活性振荡的第一个傅立叶系数,而无需单独的阶段。此外,我们在数值模拟中证明了我们的方法允许在存在噪声的情况下对梯度的强大估计,并且更深的模型受益于有限的教学信号。最后,我们在ImageNet 32​​x32数据集上建立了EP的第一个基准,并表明它与接受BP训练的等效网络的性能相匹配。我们的工作提供了分析见解,使EP可以扩展到大规模问题,并为振荡如何支持生物学和神经形态系统的学习建立正式框架。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
与神经网络的软件模拟相反,硬件实现通常有限或没有可调性。尽管此类网络在速度和能源效率方面有了很大的改善,但它们的性能受到应用有效培训的困难的限制。我们建议并实现实验性的光学系统,在该系统中,可以通过一系列高度非线性的,不可调节的节点来应用高效的反向传播训练。该系统包括实现非线性激活函数的激子孔节点。我们在单个隐藏层系统中的MNIST手写数字基准中演示了高分类精度。
translated by 谷歌翻译
经常性神经网络(RNN)经常用于建模脑功能和结构的方面。在这项工作中,我们培训了小型完全连接的RNN,以具有时变刺激的时间和流量控制任务。我们的结果表明,不同的RNN可以通过对不同的底层动态进行不同的RNN来解决相同的任务,并且优雅地降低的性能随着网络尺寸而降低,间隔持续时间增加,或者连接损坏。我们的结果对于量化通常用作黑匣子的模型的不同方面是有用的,并且需要预先理解以建模脑皮质区域的生物反应。
translated by 谷歌翻译