储层计算系统是使用驱动的动力系统构建的,在该系统中,外部输入可以改变系统的发展状态。这些范例用于信息处理,机器学习和计算。在此框架中需要解决的一个基本问题是输入与系统状态之间的统计关系。本文提供的条件可以保证驱动系统的渐近措施的存在和唯一性,并表明当输入和输出过程的集合赋予了Wasserstein距离时,它们对输入过程的依赖性是连续的。这些发展中的主要工具是将这些不变的度量表征为在这种情况下出现并在论文中进行了大量研究的自然定义的FOIA算子的固定点。这些固定点是通过在驱动系统中施加新引入的随机状态合同性来获得的,该系统在示例中很容易验证。可以通过非国家缩减的系统来满足随机状态的合同性,这通常是为了保证储层计算中的回声状态属性的需求。结果,即使不存在Echo State属性,也可能会得到满足。
translated by 谷歌翻译
庆祝的Takens嵌入定理界面涉及通过通用延迟观察地图在适当的维度的欧几里德空间中嵌入动态系统的吸引子。嵌入也建立了一种拓扑共轭。在本文中,我们展示了如何将任意序列映射到另一个空间中作为非自治动态系统的吸引力的解决方案。这种映射还需要拓扑缀合物和序列与吸引人的解决方案空间之间的嵌入。这一结果不是嵌入定理的Takens的概括,但有助于我们了解所广泛用于应用程序的离散时间状态模型所需的究竟是什么,以将外部刺激嵌入到其解决方案上。我们的成果解决了关于自主动态系统扰动的另一个基本问题。我们描述了当外源噪声渗透到连续的局部不可缩续的吸引装置(如稳定的固定点)的离散时间自主动态系统的局部不可缩短的局部噪声时究竟发生了什么。
translated by 谷歌翻译
Wassersein梯度流通概率措施在各种优化问题中发现了许多应用程序。它们通常由于由涉及梯度型电位的一些平均场相互作用而发展的可交换粒子系统的连续极限。然而,在许多问题中,例如在多层神经网络中,所谓的粒子是在节点可更换的大图上的边缘权重。已知这样的大图可以收敛到连续的限制,称为Graphons,因为它们的大小增长到无穷大。我们表明,边缘权重的合适功能的欧几里德梯度流量会聚到可以被适当地描述为梯度流的曲线上的曲线给出的新型连续轴限制,或者更重要的是最大斜率的曲线。我们的设置涵盖了诸如同性恋功能和标量熵的石墨源上的几种自然功能,并详细介绍了示例。
translated by 谷歌翻译
我们研究了有限空间中值的静止随机过程的最佳运输。为了反映潜在流程的实向性,我们限制了对固定联轴器的关注,也称为联系。由此产生的最佳连接问题捕获感兴趣过程的长期平均行为的差异。我们介绍了最优联接的估算和最佳的加入成本,我们建立了温和条件下估算器的一致性。此外,在更强的混合假设下,我们为估计的最佳连接成本建立有限样本误差速率,其延伸了IID案件中的最佳已知结果。最后,我们将一致性和速率分析扩展到最佳加入问题的熵惩罚版本。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
对抗性鲁棒性是各种现代机器学习应用中的关键财产。虽然它是最近几个理论研究的主题,但与对抗性稳健性有关的许多重要问题仍然是开放的。在这项工作中,我们研究了有关对抗对抗鲁棒性的贝叶斯最优性的根本问题。我们提供了一般的充分条件,可以保证贝叶斯最佳分类器的存在,以满足对抗性鲁棒性。我们的结果可以提供一种有用的工具,用于随后研究对抗性鲁棒性及其一致性的替代损失。这份稿件是“关于普通贝叶斯分类器的存在”在神经潮端中发表的延伸版本。原始纸张的结果不适用于一些非严格凸的规范。在这里,我们将结果扩展到所有可能的规范。
translated by 谷歌翻译
生成的对抗网络后面的数学力量提高了具有挑战性的理论问题。通过表征产生的分布的几何特性的重要问题,我们在有限的样本和渐近制度中对Wassersein Gans(WGAN)进行了彻底分析。我们研究了潜伏空间是单变量的特定情况,并且不管输出空间的尺寸如何有效。我们特别地显示出用于固定的样本大小,最佳WGAN与连接路径紧密相连,最小化采样点之间的平方欧几里德距离的总和。我们还强调了WGAN能够接近的事实(对于1-Wasserstein距离)目标分布,因为样本大小趋于无穷大,在给定的会聚速率下,并且提供了生成的Lipschitz函数的家族适当地增长。我们在半离散环境中获得了在最佳运输理论上传递新结果。
translated by 谷歌翻译
我们研究了两层神经网络,其领域和范围是具有可分离性的Banach空间。另外,我们假设图像空间配备了部分顺序,即它是Riesz空间。作为非线性,我们选择了取积极部分的晶格操作;如果$ \ Mathbb r^d $可值的神经网络,这对应于Relu激活函数。我们证明了特定类别功能的蒙特卡洛速率的逆近似定理和直接近似定理,从而扩展了有限维情况的现有结果。在本文的第二部分中,我们从正规化理论的角度研究,通过有限数量的嘈杂观测值在潜在空间上进行签名的措施来找到此类功能的最佳表示的问题。我们讨论称为源条件的规律性条件,并在噪声水平均为零并且样本数量以适当的速度为零时,在Bregman距离中获得代表度量的收敛速率。
translated by 谷歌翻译
We introduce and study a novel model-selection strategy for Bayesian learning, based on optimal transport, along with its associated predictive posterior law: the Wasserstein population barycenter of the posterior law over models. We first show how this estimator, termed Bayesian Wasserstein barycenter (BWB), arises naturally in a general, parameter-free Bayesian model-selection framework, when the considered Bayesian risk is the Wasserstein distance. Examples are given, illustrating how the BWB extends some classic parametric and non-parametric selection strategies. Furthermore, we also provide explicit conditions granting the existence and statistical consistency of the BWB, and discuss some of its general and specific properties, providing insights into its advantages compared to usual choices, such as the model average estimator. Finally, we illustrate how this estimator can be computed using the stochastic gradient descent (SGD) algorithm in Wasserstein space introduced in a companion paper arXiv:2201.04232v2 [math.OC], and provide a numerical example for experimental validation of the proposed method.
translated by 谷歌翻译
We consider stochastic gradient descents on the space of large symmetric matrices of suitable functions that are invariant under permuting the rows and columns using the same permutation. We establish deterministic limits of these random curves as the dimensions of the matrices go to infinity while the entries remain bounded. Under a "small noise" assumption the limit is shown to be the gradient flow of functions on graphons whose existence was established in arXiv:2111.09459. We also consider limits of stochastic gradient descents with added properly scaled reflected Brownian noise. The limiting curve of graphons is characterized by a family of stochastic differential equations with reflections and can be thought of as an extension of the classical McKean-Vlasov limit for interacting diffusions. The proofs introduce a family of infinite-dimensional exchangeable arrays of reflected diffusions and a novel notion of propagation of chaos for large matrices of interacting diffusions.
translated by 谷歌翻译
找到Reset中的参数的最佳配置是一个非凸显最小化问题,但一阶方法尽管如此,找到了过度分辨率制度的全局最优。通过将Reset的训练过程转化为梯度流部分微分方程(PDE)和检查该限制过程的收敛性能,我们研究了这种现象。假设激活函数为2美元 - 最佳或部分$ 1 $-homerence;正则Relu满足后一种条件。我们表明,如果Reset足够大,则深度和宽度根据代数上的准确性和置信水平,一阶优化方法可以找到适合培训数据的全局最小化器。
translated by 谷歌翻译
这项工作讨论了如何通过链接技术导致监督学习算法的预期概括误差的上限。通过开发一个一般的理论框架,我们根据损失函数的规律性及其链式对应物建立二元性界限,这可以通过将损失从损失从其梯度提升到其梯度来获得。这使我们能够根据Wasserstein距离和其他概率指标重新衍生从文献中绑定的链式相互信息,并获得新颖的链接信息理论理论范围。我们在一些玩具示例中表明,链式的概括结合可能比其标准对应物明显更紧,尤其是当算法选择的假设的分布非常集中时。关键字:概括范围;链信息理论范围;相互信息;瓦斯堡的距离; Pac-Bayes。
translated by 谷歌翻译
显示了最佳的收敛速率,显示了对保守随机偏微分方程的平均场限制对解决方案解决方案解决方案解决方案的收敛。作为第二个主要结果,该SPDE的定量中心极限定理再次得出,并以最佳的收敛速率得出。该结果尤其适用于在过叠层化的,浅的神经网络中与SPDES溶液中随机梯度下降动力学的平均场缩放率的收敛性。结果表明,在限制SPDE中包含波动可以提高收敛速度,并保留有关随机梯度下降的波动的信息。
translated by 谷歌翻译
我们研究具有随机生成内部权重的回声状态网络的均匀近似。这些模型在训练过程中仅优化了读数权重,在学习动态系统方面取得了经验成功。我们通过证明它们在弱条件下是普遍的来解决这些模型的代表性。我们的主要结果为激活函数提供了足够的条件和内部权重的采样过程,因此回声状态网络可以近似具有高概率的任何连续的休闲时间不变的操作员。特别是,对于Relu激活,我们量化了足够常规运算符的回声状态网络的近似误差。
translated by 谷歌翻译
我们引入了一个深度学习模型,该模型通常可以近似于常规条件分布(RCD)。所提出的模型分为三个阶段:首先从给定的度量空间$ \ mathcal {x} $到$ \ mathbb {r}^d $通过功能映射进行线性化输入,然后这些线性化的功能由深层馈电的神经网络处理,然后通过Bahdanau等人引入的注意机制的概率扩展,将网络的输出转换为$ 1 $ -WASSERSTEIN SPACE $ \ MATHCAL {P} _1(\ Mathbb {r}^d)$。 (2014)。我们发现,使用我们的框架构建的模型可以从$ \ mathbb {r}^d $到$ \ mathcal {p} _1(\ mathbb {r}^d)$均匀地在紧凑的集合上近似任何连续功能。当近似$ \ mathcal {p} _1(\ mathbb {r}^d)$ - 有价值的函数时,我们确定了两种避免维数的诅咒的方法。第一个策略描述了$ c(\ mathbb {r}^d,\ mathcal {p} _1(\ mathbb {r}^d))$中的函数,可以在$ \ mathbb {r}的任何紧凑子集上有效地近似地近似^D $。第二种方法描述了$ \ mathbb {r}^d $的紧凑子集,其中最多的$ c(\ mathbb {r}^d,\ mathcal {p} _1 _1(\ mathbb {r}^d))$可以有效地近似。结果经过实验验证。
translated by 谷歌翻译
我们在非参数二进制分类的一个对抗性训练问题之间建立了等价性,以及规范器是非识别范围功能的正则化风险最小化问题。由此产生的正常风险最小化问题允许在图像分析和基于图形学习中常常研究的$ L ^ 1 + $(非本地)$ \ Operatorvers {TV} $的精确凸松弛。这种重构揭示了丰富的几何结构,这反过来允许我们建立原始问题的最佳解决方案的一系列性能,包括存在最小和最大解决方案(以合适的意义解释),以及常规解决方案的存在(也以合适的意义解释)。此外,我们突出了对抗性训练和周长最小化问题的联系如何为涉及周边/总变化的正规风险最小化问题提供一种新颖的直接可解释的统计动机。我们的大部分理论结果与用于定义对抗性攻击的距离无关。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of geometries $\mathscr{X}$ and $\mathscr{Y}$ and our framework returns a DL model capable of causally approximating any ``regular'' map sending time series in $\mathscr{X}^{\mathbb{Z}}$ to time series in $\mathscr{Y}^{\mathbb{Z}}$ while respecting their forward flow of information throughout time. Suitable geometries on $\mathscr{Y}$ include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fr\'echet spaces admitting a Schauder basis, e.g. as in classical finance. Suitable, $\mathscr{X}$ are any compact subset of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of $\mathscr{X}$ and of $\mathscr{Y}$. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that H\"older functions, defined between such $\mathscr{X}$ and $\mathscr{Y}$ can be approximated by DL models.
translated by 谷歌翻译
A universal kernel is constructed whose sections approximate any causal and time-invariant filter in the fading memory category with inputs and outputs in a finite-dimensional Euclidean space. This kernel is built using the reservoir functional associated with a state-space representation of the Volterra series expansion available for any analytic fading memory filter. It is hence called the Volterra reservoir kernel. Even though the state-space representation and the corresponding reservoir feature map are defined on an infinite-dimensional tensor algebra space, the kernel map is characterized by explicit recursions that are readily computable for specific data sets when employed in estimation problems using the representer theorem. We showcase the performance of the Volterra reservoir kernel in a popular data science application in relation to bitcoin price prediction.
translated by 谷歌翻译
Entropic regularization provides a generalization of the original optimal transport problem. It introduces a penalty term defined by the Kullback-Leibler divergence, making the problem more tractable via the celebrated Sinkhorn algorithm. Replacing the Kullback-Leibler divergence with a general $f$-divergence leads to a natural generalization. The case of divergences defined by superlinear functions was recently studied by Di Marino and Gerolin. Using convex analysis, we extend the theory developed so far to include all $f$-divergences defined by functions of Legendre type, and prove that under some mild conditions, strong duality holds, optimums in both the primal and dual problems are attained, the generalization of the $c$-transform is well-defined, and we give sufficient conditions for the generalized Sinkhorn algorithm to converge to an optimal solution. We propose a practical algorithm for computing an approximate solution of the optimal transport problem with $f$-divergence regularization via the generalized Sinkhorn algorithm. Finally, we present experimental results on synthetic 2-dimensional data, demonstrating the effects of using different $f$-divergences for regularization, which influences convergence speed, numerical stability and sparsity of the optimal coupling.
translated by 谷歌翻译