高能密度物理学的模拟很昂贵,部分原因是需要产生非本地热力学平衡的不透明性。高保真光谱可能会揭示出在没有低保真光谱的模拟中的新物理学,但是这些模拟的成本也随着所使用的不透明性的保真度的水平而扩展。神经网络能够再现这些光谱,但是神经网络需要数据来训练它们,从而限制了训练数据的忠诚度。本文表明,可以在3 \%至4 \%的领域中使用中位数错误的高保真光谱,使用少于50个高保真k的k k k k数据,通过对许多对许多人进行的神经网络进行转移学习,以对许多人进行培训次数更多的低保真数据。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
Different machine learning (ML) models are trained on SCADA and meteorological data collected at an onshore wind farm and then assessed in terms of fidelity and accuracy for predictions of wind speed, turbulence intensity, and power capture at the turbine and wind farm levels for different wind and atmospheric conditions. ML methods for data quality control and pre-processing are applied to the data set under investigation and found to outperform standard statistical methods. A hybrid model, comprised of a linear interpolation model, Gaussian process, deep neural network (DNN), and support vector machine, paired with a DNN filter, is found to achieve high accuracy for modeling wind turbine power capture. Modifications of the incoming freestream wind speed and turbulence intensity, $TI$, due to the evolution of the wind field over the wind farm and effects associated with operating turbines are also captured using DNN models. Thus, turbine-level modeling is achieved using models for predicting power capture while farm-level modeling is achieved by combining models predicting wind speed and $TI$ at each turbine location from freestream conditions with models predicting power capture. Combining these models provides results consistent with expected power capture performance and holds promise for future endeavors in wind farm modeling and diagnostics. Though training ML models is computationally expensive, using the trained models to simulate the entire wind farm takes only a few seconds on a typical modern laptop computer, and the total computational cost is still lower than other available mid-fidelity simulation approaches.
translated by 谷歌翻译
相位场建模是一种有效但计算昂贵的方法,用于捕获材料中的中尺度形态和微观结构演化。因此,需要快速且可推广的替代模型来减轻计算征税流程的成本,例如在材料的优化和设计中。尖锐相边界的存在所产生的物理现象的固有不连续性使替代模型的训练繁琐。我们开发了一个框架,该框架将卷积自动编码器架构与深神经操作员(DeepOnet)集成在一起,以了解两相混合物的动态演化,并加速预测微结构演变的时间。我们利用卷积自动编码器在低维的潜在空间中提供微观结构数据的紧凑表示。 DeepOnet由两个子网络组成,一个用于编码固定数量的传感器位置(分支网)的输入函数,另一个用于编码输出功能的位置(TRUNK NET),了解微观结构Evolution的中尺度动力学从自动编码器潜在空间。然后,卷积自动编码器的解码器部分从deponet预测中重建了时间进化的微结构。然后,可以使用训练有素的DeepOnet架构来替换插值任务中的高保真相位数值求解器或在外推任务中加速数值求解器。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
Non-equilibrium chemistry is a key process in the study of the InterStellar Medium (ISM), in particular the formation of molecular clouds and thus stars. However, computationally it is among the most difficult tasks to include in astrophysical simulations, because of the typically high (>40) number of reactions, the short evolutionary timescales (about $10^4$ times less than the ISM dynamical time) and the characteristic non-linearity and stiffness of the associated Ordinary Differential Equations system (ODEs). In this proof of concept work, we show that Physics Informed Neural Networks (PINN) are a viable alternative to traditional ODE time integrators for stiff thermo-chemical systems, i.e. up to molecular hydrogen formation (9 species and 46 reactions). Testing different chemical networks in a wide range of densities ($-2< \log n/{\rm cm}^{-3}< 3$) and temperatures ($1 < \log T/{\rm K}< 5$), we find that a basic architecture can give a comfortable convergence only for simplified chemical systems: to properly capture the sudden chemical and thermal variations a Deep Galerkin Method is needed. Once trained ($\sim 10^3$ GPUhr), the PINN well reproduces the strong non-linear nature of the solutions (errors $\lesssim 10\%$) and can give speed-ups up to a factor of $\sim 200$ with respect to traditional ODE solvers. Further, the latter have completion times that vary by about $\sim 30\%$ for different initial $n$ and $T$, while the PINN method gives negligible variations. Both the speed-up and the potential improvement in load balancing imply that PINN-powered simulations are a very palatable way to solve complex chemical calculation in astrophysical and cosmological problems.
translated by 谷歌翻译
Machine-learning models are increasingly used to predict properties of atoms in chemical systems. There have been major advances in developing descriptors and regression frameworks for this task, typically starting from (relatively) small sets of quantum-mechanical reference data. Larger datasets of this kind are becoming available, but remain expensive to generate. Here we demonstrate the use of a large dataset that we have "synthetically" labelled with per-atom energies from an existing ML potential model. The cheapness of this process, compared to the quantum-mechanical ground truth, allows us to generate millions of datapoints, in turn enabling rapid experimentation with atomistic ML models from the small- to the large-data regime. This approach allows us here to compare regression frameworks in depth, and to explore visualisation based on learned representations. We also show that learning synthetic data labels can be a useful pre-training task for subsequent fine-tuning on small datasets. In the future, we expect that our open-sourced dataset, and similar ones, will be useful in rapidly exploring deep-learning models in the limit of abundant chemical data.
translated by 谷歌翻译
我们提出了一种基于机器学习的方法来解决运输过程的研究,在连续力学中无处不在,特别关注那些由复杂的微物理学统治的那些现象,对理论调查不切实际,但表现出由闭合的数学表达可以描述的紧急行为。我们的机器学习模型,使用简单组件建造以及若干知名实践,能够学习运输过程的潜在表示,从标称误差表征数据的标称误差导致声音泛化属性,可以比预期更接近地面真理。通过对融合和宇宙等离子体相关的热通量抑制的长期问题的理想研究来证明这一点。 Our analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size.虽然学习的表示可以用作数值建模目的的插件,但是也可以利用上述误差分析来获得描述传输机制和理论值的可靠的数学表达式。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
在整个计算科学中,越来越需要利用原始计算马力的持续改进,通过对蛮力的尺度锻炼的尺度增加,以增加网状元素数量的增加。例如,如果不考虑分子水平的相互作用,就不可能对纳米多孔介质的转运进行定量预测,即从紧密的页岩地层提取至关重要的碳氢化合物。同样,惯性限制融合模拟依赖于数值扩散来模拟分子效应,例如非本地转运和混合,而无需真正考虑分子相互作用。考虑到这两个不同的应用程序,我们开发了一种新颖的功能,该功能使用主动学习方法来优化局部细尺度模拟的使用来告知粗尺度流体动力学。我们的方法解决了三个挑战:预测连续性粗尺度轨迹,以推测执行新的精细分子动力学计算,动态地更新细度计算中的粗尺度,并量化神经网络模型中的不确定性。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
随着数据的不断增加,将现代机器学习方法应用于建模和控制等领域的兴趣爆炸。但是,尽管这种黑盒模型具有灵活性和令人惊讶的准确性,但仍然很难信任它们。结合两种方法的最新努力旨在开发灵活的模型,这些模型仍然可以很好地推广。我们称为混合分析和建模(HAM)的范式。在这项工作中,我们调查了使用数据驱动模型纠正基于错误的物理模型的纠正源术语方法(COSTA)。这使我们能够开发出可以进行准确预测的模型,即使问题的基本物理学尚未得到充分理解。我们将Costa应用于铝电解电池中的Hall-H \'Eroult工艺。我们证明该方法提高了准确性和预测稳定性,从而产生了总体可信赖的模型。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
贝叶斯优化(BO)是用于全局优化昂贵的黑盒功能的流行范式,但是在许多域中,该函数并不完全是黑色框。数据可能具有一些已知的结构(例如对称性)和/或数据生成过程可能是一个复合过程,除优化目标的值外,还可以产生有用的中间或辅助信息。但是,传统上使用的代孕模型,例如高斯工艺(GPS),随数据集大小的规模较差,并且不容易适应已知的结构。取而代之的是,我们使用贝叶斯神经网络,这是具有感应偏见的一类可扩展和灵活的替代模型,将BO扩展到具有高维度的复杂,结构化问题。我们证明了BO在物理和化学方面的许多现实问题,包括使用卷积神经网络对光子晶体材料进行拓扑优化,以及使用图神经网络对分子进行化学性质优化。在这些复杂的任务上,我们表明,就抽样效率和计算成本而言,神经网络通常优于GP作为BO的替代模型。
translated by 谷歌翻译
这项工作介绍了最近开发的参数,非侵入性和多余性降低的建模方法在高维位移和应力场上的应用,这是由于几何分析的结构分析而引起的,这些几何形状分析在离散化和结构拓扑的规模上不同。提出的方法通过将其解决方案分别投射到公共子空间中,利用了歧管对齐方式将不一致的现场输出融合不一致的场输出。该方法的有效性在两个多保真场景上得到了证明,涉及基准翼几何形状的结构分析。结果表明,使用不兼容的网格或相关但不同的拓扑结构的结构模拟输出很容易组合为单个预测模型,从而消除了对数据进行其他预处理的需求。与单性模型相比,新的多保真降低模型以较低的计算成本获得了相对较高的预测精度。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)的最新表现突破,尤其是深度学习的进步(DL),功能强大,易于使用的ML库(例如Scikit-Learn,Tensorflow,Pytorch。),Pytorch。,Pytorch。。核工程师对AI/ML的前所未有的兴趣,并增加了计算能力。对于基于物理学的计算模型,已经广泛研究了验证,验证和不确定性定量(VVUQ),并且已经开发了许多方法。但是,ML模型的VVUQ的研究相对较少,尤其是在核工程中。在这项工作中,我们专注于ML模型的UQ作为ML VVUQ的初步步骤,更具体地说,是Deep Neural Networks(DNNS),因为它们是用于回归和分类任务的最广泛使用的监督ML算法。这项工作旨在量化DNN的预测或近似不确定性,当它们用作昂贵的物理模型的替代模型时。比较了DNN UQ的三种技术,即Monte Carlo辍学(MCD),深层合奏(DE)和贝叶斯神经网络(BNNS)。两个核工程示例用于基准这些方法,(1)使用野牛代码的时间依赖性裂变气体释放数据,以及(2)基于BFBT基准测试的无效分数模拟使用痕量代码。发现这三种方法通常需要不同的DNN体系结构和超参数来优化其性能。 UQ结果还取决于可用培训数据的量和数据的性质。总体而言,所有这三种方法都可以提供对近似不确定性的合理估计。当平均预测接近测试数据时,不确定性通常较小,而BNN方法通常会产生比MCD和DE更大的不确定性。
translated by 谷歌翻译