语义图像扰动(例如缩放和旋转)已被证明很容易欺骗深神经网络(DNN)。因此,培训DNN对这些扰动有证明是鲁棒的,至关重要。但是,由于现有的确定性语义验证符非常缓慢,因此没有先前的工作能够将确定性语义鲁棒性的目标纳入训练程序。为了应对这些挑战,我们提出了认证的语义培训(CST),这是针对语义图像扰动的确定性认证鲁棒性的第一个培训框架。我们的框架利用了一种新颖的GPU优化验证器,与现有作品不同,它足以用于培训。我们的结果表明,与基于现有作品训练的网络相比,通过CST训练的网络始终达到更好的证明语义鲁棒性和清洁精度。
translated by 谷歌翻译
经认证的稳健性是安全关键应用中的深度神经网络的理想性质,流行的训练算法可以通过计算其Lipschitz常数的全球界限来认证神经网络的鲁棒性。然而,这种界限往往松动:它倾向于过度规范神经网络并降低其自然精度。绑定的Lipschitz绑定可以在自然和认证的准确性之间提供更好的权衡,但通常很难根据网络的非凸起计算。在这项工作中,我们通过考虑激活函数(例如Relu)和权重矩阵之间的相互作用,提出了一种有效和培训的\ emph {本地} Lipschitz上限。具体地,当计算权重矩阵的诱发标准时,我们消除了相应的行和列,其中保证激活函数在每个给定数据点的邻域中是常数,它提供比全局Lipschitz常数的可怕更严格的绑定神经网络。我们的方法可用作插入式模块,以拧紧在许多可认证的训练算法中绑定的Lipschitz。此外,我们建议夹住激活功能(例如,Relu和Maxmin),具有可读的上限阈值和稀疏性损失,以帮助网络实现甚至更严格的本地嘴唇尖端。在实验上,我们表明我们的方法始终如一地优于Mnist,CiFar-10和Tinyimagenet数据集的清洁和认证准确性,具有各种网络架构的清洁和认证的准确性。
translated by 谷歌翻译
由于机器学习(ML)系统变得普遍存在,因此保护其安全性至关重要。然而,最近已经证明,动机的对手能够通过使用语义转换扰乱测试数据来误导ML系统。虽然存在丰富的研究机构,但为ML模型提供了可提供的稳健性保证,以防止$ \ ell_p $ norm界限对抗对抗扰动,抵御语义扰动的保证仍然很广泛。在本文中,我们提供了TSS - 一种统一的框架,用于针对一般对抗性语义转换的鲁棒性认证。首先,根据每个转换的性质,我们将常见的变换划分为两类,即可解决的(例如,高斯模糊)和差异可解的(例如,旋转)变换。对于前者,我们提出了特定于转型的随机平滑策略并获得强大的稳健性认证。后者类别涵盖涉及插值错误的变换,我们提出了一种基于分层采样的新方法,以证明稳健性。我们的框架TSS利用这些认证策略并结合了一致性增强的培训,以提供严谨的鲁棒性认证。我们对十种挑战性语义转化进行了广泛的实验,并表明TSS显着优于现有技术。此外,据我们所知,TSS是第一种在大规模想象数据集上实现非竞争认证稳健性的方法。例如,我们的框架在ImageNet上实现了旋转攻击的30.4%认证的稳健准确性(在$ \ PM 30 ^ \ CIC $)。此外,要考虑更广泛的转换,我们展示了TSS对自适应攻击和不可预见的图像损坏,例如CIFAR-10-C和Imagenet-C。
translated by 谷歌翻译
We introduce a scalable method for training robust neural networks based on abstract interpretation. We present several abstract transformers which balance efficiency with precision and show these can be used to train large neural networks that are certifiably robust to adversarial perturbations.
translated by 谷歌翻译
在安全 - 关键的深度学习应用中,鲁棒性测量是一个至关重要的前部阶段。但是,现有的鲁棒性验证方法对于在现实世界中部署机器学习系统不足以实用。一方面,这些方法试图声称没有扰动可以``傻瓜''深神经网络(DNNS),这在实践中可能太严格了。另一方面,现有作品严格考虑像素空间上的$ l_p $有界的添加剂扰动,尽管扰动(例如颜色转换和几何变换)在现实世界中更实际且经常发生。因此,从实际的角度来看,我们提出了一种基于适应性浓度的新颖和一般{\ IT概率的稳健性评估方法}(ProA),并且可以测量深度学习模型对功能扰动的鲁棒性。 PROA可以根据模型的概率鲁棒性提供统计保证,\ textit {i.e。},部署后训练有素的模型遇到的失败概率。我们的实验证明了PAA在评估对广泛功能扰动的概率鲁棒性方面的有效性和灵活性,并且与现有的最新基准相比,POA可以很好地扩展到各种大型深度神经网络。为了重现性,我们在github上发布工具:\ url {https://github.com/trustai/proa}。
translated by 谷歌翻译
深神经网络容易受到像素位移的矢量场的形式的输入变形,以及其他参数化几何变形。转换,旋转等。电流输入变形认证方法1.不要在大输入数据集上扩展到深网络,或者2.只能证明特定的变形类,例如,只有旋转。我们为一般矢量字段和参数化变形进行随机平滑设置的认证,并分别提出DeformRS-VF和DeformRS-PAR。我们的新配方缩放到大输入数据集上的大型网络。例如,DeformRS-PAR认证丰富的变形,覆盖转换,旋转,缩放,仿射变形和其他视觉上对准的变形,例如通过离散 - 余弦变换参数化的视觉上的变形。在MNIST,CIFAR10和Imagenet上进行了广泛的实验,显示了Deformrs-Par的竞争性能,实现了39 \%$ 39 \%$的验证准确性,以便在ImageNet上的Att [ - 10 \ dovers,10 \ dovers] $上的扰动旋转。
translated by 谷歌翻译
深度神经网络(DNN)的巨大进步导致了各种任务的最先进的性能。然而,最近的研究表明,DNNS容易受到对抗的攻击,这在将这些模型部署到自动驾驶等安全关键型应用时,这使得非常关注。已经提出了不同的防御方法,包括:a)经验防御,通常可以在不提供稳健性认证的情况下再次再次攻击; b)可认真的稳健方法,由稳健性验证组成,提供了在某些条件下的任何攻击和相应的强大培训方法中的稳健准确性的下限。在本文中,我们系统化了可认真的稳健方法和相关的实用和理论意义和调查结果。我们还提供了在不同数据集上现有的稳健验证和培训方法的第一个全面基准。特别是,我们1)为稳健性验证和培训方法提供分类,以及总结代表性算法的方法,2)揭示这些方法中的特征,优势,局限性和基本联系,3)讨论当前的研究进展情况TNN和4的可信稳健方法的理论障碍,主要挑战和未来方向提供了一个开放的统一平台,以评估超过20种代表可认真的稳健方法,用于各种DNN。
translated by 谷歌翻译
This report summarizes the 3rd International Verification of Neural Networks Competition (VNN-COMP 2022), held as a part of the 5th Workshop on Formal Methods for ML-Enabled Autonomous Systems (FoMLAS), which was collocated with the 34th International Conference on Computer-Aided Verification (CAV). VNN-COMP is held annually to facilitate the fair and objective comparison of state-of-the-art neural network verification tools, encourage the standardization of tool interfaces, and bring together the neural network verification community. To this end, standardized formats for networks (ONNX) and specification (VNN-LIB) were defined, tools were evaluated on equal-cost hardware (using an automatic evaluation pipeline based on AWS instances), and tool parameters were chosen by the participants before the final test sets were made public. In the 2022 iteration, 11 teams participated on a diverse set of 12 scored benchmarks. This report summarizes the rules, benchmarks, participating tools, results, and lessons learned from this iteration of this competition.
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
We present AI 2 , the first sound and scalable analyzer for deep neural networks. Based on overapproximation, AI 2 can automatically prove safety properties (e.g., robustness) of realistic neural networks (e.g., convolutional neural networks).The key insight behind AI 2 is to phrase reasoning about safety and robustness of neural networks in terms of classic abstract interpretation, enabling us to leverage decades of advances in that area. Concretely, we introduce abstract transformers that capture the behavior of fully connected and convolutional neural network layers with rectified linear unit activations (ReLU), as well as max pooling layers. This allows us to handle real-world neural networks, which are often built out of those types of layers.We present a complete implementation of AI 2 together with an extensive evaluation on 20 neural networks. Our results demonstrate that: (i) AI 2 is precise enough to prove useful specifications (e.g., robustness), (ii) AI 2 can be used to certify the effectiveness of state-of-the-art defenses for neural networks, (iii) AI 2 is significantly faster than existing analyzers based on symbolic analysis, which often take hours to verify simple fully connected networks, and (iv) AI 2 can handle deep convolutional networks, which are beyond the reach of existing methods.
translated by 谷歌翻译
多项式网络(PNS)最近在面部和图像识别方面表现出了有希望的表现。但是,PNS的鲁棒性尚不清楚,因此获得证书对于使其在现实世界应用中的采用至关重要。基于分支和绑定(BAB)技术的Relu神经网络(NNS)上的现有验证算法不能微不足道地应用于PN验证。在这项工作中,我们设计了一种新的边界方法,该方法配备了BAB,用于全球融合保证,称为VPN。一个关键的见解是,我们获得的边界比间隔结合的传播基线更紧密。这可以通过MNIST,CIFAR10和STL10数据集的经验验证进行声音和完整的PN验证。我们认为我们的方法对NN验证具有自身的兴趣。
translated by 谷歌翻译
Existing neural network verifiers compute a proof that each input is handled correctly under a given perturbation by propagating a symbolic abstraction of reachable values at each layer. This process is repeated from scratch independently for each input (e.g., image) and perturbation (e.g., rotation), leading to an expensive overall proof effort when handling an entire dataset. In this work, we introduce a new method for reducing this verification cost without losing precision based on a key insight that abstractions obtained at intermediate layers for different inputs and perturbations can overlap or contain each other. Leveraging our insight, we introduce the general concept of shared certificates, enabling proof effort reuse across multiple inputs to reduce overall verification costs. We perform an extensive experimental evaluation to demonstrate the effectiveness of shared certificates in reducing the verification cost on a range of datasets and attack specifications on image classifiers including the popular patch and geometric perturbations. We release our implementation at https://github.com/eth-sri/proof-sharing.
translated by 谷歌翻译
Post-hoc explanation methods are used with the intent of providing insights about neural networks and are sometimes said to help engender trust in their outputs. However, popular explanations methods have been found to be fragile to minor perturbations of input features or model parameters. Relying on constraint relaxation techniques from non-convex optimization, we develop a method that upper-bounds the largest change an adversary can make to a gradient-based explanation via bounded manipulation of either the input features or model parameters. By propagating a compact input or parameter set as symbolic intervals through the forwards and backwards computations of the neural network we can formally certify the robustness of gradient-based explanations. Our bounds are differentiable, hence we can incorporate provable explanation robustness into neural network training. Empirically, our method surpasses the robustness provided by previous heuristic approaches. We find that our training method is the only method able to learn neural networks with certificates of explanation robustness across all six datasets tested.
translated by 谷歌翻译
We propose a method to learn deep ReLU-based classifiers that are provably robust against normbounded adversarial perturbations on the training data. For previously unseen examples, the approach is guaranteed to detect all adversarial examples, though it may flag some non-adversarial examples as well. The basic idea is to consider a convex outer approximation of the set of activations reachable through a norm-bounded perturbation, and we develop a robust optimization procedure that minimizes the worst case loss over this outer region (via a linear program). Crucially, we show that the dual problem to this linear program can be represented itself as a deep network similar to the backpropagation network, leading to very efficient optimization approaches that produce guaranteed bounds on the robust loss. The end result is that by executing a few more forward and backward passes through a slightly modified version of the original network (though possibly with much larger batch sizes), we can learn a classifier that is provably robust to any norm-bounded adversarial attack. We illustrate the approach on a number of tasks to train classifiers with robust adversarial guarantees (e.g. for MNIST, we produce a convolutional classifier that provably has less than 5.8% test error for any adversarial attack with bounded ∞ norm less than = 0.1), and code for all experiments is available at http://github.com/ locuslab/convex_adversarial.
translated by 谷歌翻译
最近的作品试图通过对比原始扰动大的域进行攻击,并在目标中增加各种正则化项,从而提高受对抗训练的网络的验证性。但是,这些算法表现不佳或需要复杂且昂贵的舞台训练程序,从而阻碍了其实际适用性。我们提出了IBP-R,这是一种新颖的经过验证的培训算法,既简单又有效。 IBP-R通过基于廉价的间隔结合传播对扩大域的对抗域进行对抗性攻击来诱导网络可验证性,从而最大程度地减少了非凸vex验证问题与其近似值之间的差距。通过利用最近的分支机构和结合的框架,我们表明IBP-R获得了最先进的核能 - 智能权准折衷,而在CIFAR-10上进行了小型扰动,而培训的速度明显快于相关的先前工作。此外,我们提出了一种新颖的分支策略,该策略依赖于基于$ \ beta $ crown的简单启发式,可降低最先进的分支分支算法的成本,同时产生可比质量的分裂。
translated by 谷歌翻译
现代神经网络Excel在图像分类中,但它们仍然容易受到常见图像损坏,如模糊,斑点噪音或雾。最近的方法关注这个问题,例如Augmix和Deepaulment,引入了在预期运行的防御,以期望图像损坏分布。相比之下,$ \ ell_p $ -norm界限扰动的文献侧重于针对最坏情况损坏的防御。在这项工作中,我们通过提出防范内人来调和两种方法,这是一种优化图像到图像模型的参数来产生对外损坏的增强图像的技术。我们理论上激发了我们的方法,并为其理想化版本的一致性以及大纲领提供了足够的条件。我们的分类机器在预期对CiFar-10-C进行的常见图像腐败基准上提高了最先进的,并改善了CIFAR-10和ImageNet上的$ \ ell_p $ -norm有界扰动的最坏情况性能。
translated by 谷歌翻译
深度神经网络已被证明容易受到基于语义特征扰动输入的对抗性攻击。现有的鲁棒性分析仪可以建议语义特征社区提高网络的可靠性。但是,尽管这些技术取得了重大进展,但他们仍然很难扩展到深层网络和大型社区。在这项工作中,我们介绍了VEEP,这是一种主动学习方法,将验证过程分为一系列较小的验证步骤,每个验证步骤都会提交给现有的鲁棒性分析仪。关键想法是基于先前的步骤来预测下一个最佳步骤。通过参数回归估算认证速度和灵敏度来预测最佳步骤。我们评估了MNIST,时尚摄影师,CIFAR-10和Imagenet的VEEP,并表明它可以分析各种特征的邻域:亮度,对比度,色相,饱和度和轻度。我们表明,平均而言,鉴于90分钟的超时,VEEP在29分钟内验证了96%的最大认证社区,而现有的拆分接近近距离验证,平均在58分钟内验证了73%的最大认证社区的73%。
translated by 谷歌翻译
通用的对抗扰动(UAP)是不可察觉的,图像敏捷的矢量,引起深度神经网络(DNNS),从而从具有很高概率的数据分布中误分类输入。现有方法不会为转换创造强大的UAPS,从而将其适用性限制为现实世界攻击。在这项工作中,我们介绍了一个新的概念和强大的普遍对抗性扰动的表述。基于我们的公式,我们构建了一种小说,迭代算法,该算法利用了概率的鲁棒性界限来生成UAPS,以与通过组成任意亚差异性转换功能生成的转换产生鲁棒。我们对流行的CIFAR-10和ILSVRC 2012数据集进行了广泛的评估,该数据集测量了人类解剖性语义转换(例如旋转,对比变化等)在现实世界中常见的鲁棒性。我们的结果表明,我们生成的UAP比基线的UAP更强大。
translated by 谷歌翻译
我们考虑了认证深神经网络对现实分布变化的鲁棒性的问题。为此,我们通过提出一个新型的神经符号验证框架来弥合手工制作的规格和现实部署设置之间的差距模型。这种环境引起的一个独特的挑战是,现有的验证者不能紧密地近似sigmoid激活,这对于许多最新的生成模型至关重要。为了应对这一挑战,我们提出了一个通用的元算象来处理乙状结肠激活,该乙状结激素利用反示例引导的抽象细化的经典概念。关键思想是“懒惰地”完善Sigmoid函数的抽象,以排除先前抽象中发现的虚假反示例,从而确保验证过程中的进展,同时保持状态空间较小。 MNIST和CIFAR-10数据集的实验表明,我们的框架在一系列具有挑战性的分配变化方面大大优于现有方法。
translated by 谷歌翻译
当前,随机平滑被认为是获得确切可靠分类器的最新方法。尽管其表现出色,但该方法仍与各种严重问题有关,例如``认证准确性瀑布'',认证与准确性权衡甚至公平性问题。已经提出了依赖输入的平滑方法,目的是克服这些缺陷。但是,我们证明了这些方法缺乏正式的保证,因此所产生的证书是没有道理的。我们表明,一般而言,输入依赖性平滑度遭受了维数的诅咒,迫使方差函数具有低半弹性。另一方面,我们提供了一个理论和实用的框架,即使在严格的限制下,即使在有维度的诅咒的情况下,即使在存在维度的诅咒的情况下,也可以使用依赖输入的平滑。我们提供平滑方差功能的一种混凝土设计,并在CIFAR10和MNIST上进行测试。我们的设计减轻了经典平滑的一些问题,并正式下划线,但仍需要进一步改进设计。
translated by 谷歌翻译