Existing neural network verifiers compute a proof that each input is handled correctly under a given perturbation by propagating a symbolic abstraction of reachable values at each layer. This process is repeated from scratch independently for each input (e.g., image) and perturbation (e.g., rotation), leading to an expensive overall proof effort when handling an entire dataset. In this work, we introduce a new method for reducing this verification cost without losing precision based on a key insight that abstractions obtained at intermediate layers for different inputs and perturbations can overlap or contain each other. Leveraging our insight, we introduce the general concept of shared certificates, enabling proof effort reuse across multiple inputs to reduce overall verification costs. We perform an extensive experimental evaluation to demonstrate the effectiveness of shared certificates in reducing the verification cost on a range of datasets and attack specifications on image classifiers including the popular patch and geometric perturbations. We release our implementation at https://github.com/eth-sri/proof-sharing.
translated by 谷歌翻译
We present AI 2 , the first sound and scalable analyzer for deep neural networks. Based on overapproximation, AI 2 can automatically prove safety properties (e.g., robustness) of realistic neural networks (e.g., convolutional neural networks).The key insight behind AI 2 is to phrase reasoning about safety and robustness of neural networks in terms of classic abstract interpretation, enabling us to leverage decades of advances in that area. Concretely, we introduce abstract transformers that capture the behavior of fully connected and convolutional neural network layers with rectified linear unit activations (ReLU), as well as max pooling layers. This allows us to handle real-world neural networks, which are often built out of those types of layers.We present a complete implementation of AI 2 together with an extensive evaluation on 20 neural networks. Our results demonstrate that: (i) AI 2 is precise enough to prove useful specifications (e.g., robustness), (ii) AI 2 can be used to certify the effectiveness of state-of-the-art defenses for neural networks, (iii) AI 2 is significantly faster than existing analyzers based on symbolic analysis, which often take hours to verify simple fully connected networks, and (iv) AI 2 can handle deep convolutional networks, which are beyond the reach of existing methods.
translated by 谷歌翻译
最近,图形神经网络(GNN)已应用于群集上的调整工作,比手工制作的启发式方法更好地表现了。尽管表现令人印象深刻,但仍然担心这些基于GNN的工作调度程序是否满足用户对其他重要属性的期望,例如防止策略,共享激励和稳定性。在这项工作中,我们考虑对基于GNN的工作调度程序的正式验证。我们解决了几个特定领域的挑战,例如网络,这些挑战比验证图像和NLP分类器时遇到的更深层和规格更丰富。我们开发了拉斯维加斯,这是基于精心设计的算法,将这些调度程序的单步和多步属性验证的第一个通用框架,它们结合了抽象,改进,求解器和证明传输。我们的实验结果表明,与以前的方法相比,维加斯在验证基于GNN的调度程序的重要特性时会达到显着加速。
translated by 谷歌翻译
我们考虑了认证深神经网络对现实分布变化的鲁棒性的问题。为此,我们通过提出一个新型的神经符号验证框架来弥合手工制作的规格和现实部署设置之间的差距模型。这种环境引起的一个独特的挑战是,现有的验证者不能紧密地近似sigmoid激活,这对于许多最新的生成模型至关重要。为了应对这一挑战,我们提出了一个通用的元算象来处理乙状结肠激活,该乙状结激素利用反示例引导的抽象细化的经典概念。关键思想是“懒惰地”完善Sigmoid函数的抽象,以排除先前抽象中发现的虚假反示例,从而确保验证过程中的进展,同时保持状态空间较小。 MNIST和CIFAR-10数据集的实验表明,我们的框架在一系列具有挑战性的分配变化方面大大优于现有方法。
translated by 谷歌翻译
This report summarizes the 3rd International Verification of Neural Networks Competition (VNN-COMP 2022), held as a part of the 5th Workshop on Formal Methods for ML-Enabled Autonomous Systems (FoMLAS), which was collocated with the 34th International Conference on Computer-Aided Verification (CAV). VNN-COMP is held annually to facilitate the fair and objective comparison of state-of-the-art neural network verification tools, encourage the standardization of tool interfaces, and bring together the neural network verification community. To this end, standardized formats for networks (ONNX) and specification (VNN-LIB) were defined, tools were evaluated on equal-cost hardware (using an automatic evaluation pipeline based on AWS instances), and tool parameters were chosen by the participants before the final test sets were made public. In the 2022 iteration, 11 teams participated on a diverse set of 12 scored benchmarks. This report summarizes the rules, benchmarks, participating tools, results, and lessons learned from this iteration of this competition.
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
神经网络已广泛应用于垃圾邮件和网络钓鱼检测,入侵预防和恶意软件检测等安全应用程序。但是,这种黑盒方法通常在应用中具有不确定性和不良的解释性。此外,神经网络本身通常容易受到对抗攻击的影响。由于这些原因,人们对可信赖和严格的方法有很高的需求来验证神经网络模型的鲁棒性。对抗性的鲁棒性在处理恶意操纵输入时涉及神经网络的可靠性,是安全和机器学习中最热门的主题之一。在这项工作中,我们在神经网络的对抗性鲁棒性验证中调查了现有文献,并在机器学习,安全和软件工程领域收集了39项多元化研究工作。我们系统地分析了它们的方法,包括如何制定鲁棒性,使用哪种验证技术以及每种技术的优势和局限性。我们从正式验证的角度提供分类学,以全面理解该主题。我们根据财产规范,减少问题和推理策略对现有技术进行分类。我们还展示了使用样本模型在现有研究中应用的代表性技术。最后,我们讨论了未来研究的开放问题。
translated by 谷歌翻译
深度神经网络已被证明容易受到基于语义特征扰动输入的对抗性攻击。现有的鲁棒性分析仪可以建议语义特征社区提高网络的可靠性。但是,尽管这些技术取得了重大进展,但他们仍然很难扩展到深层网络和大型社区。在这项工作中,我们介绍了VEEP,这是一种主动学习方法,将验证过程分为一系列较小的验证步骤,每个验证步骤都会提交给现有的鲁棒性分析仪。关键想法是基于先前的步骤来预测下一个最佳步骤。通过参数回归估算认证速度和灵敏度来预测最佳步骤。我们评估了MNIST,时尚摄影师,CIFAR-10和Imagenet的VEEP,并表明它可以分析各种特征的邻域:亮度,对比度,色相,饱和度和轻度。我们表明,平均而言,鉴于90分钟的超时,VEEP在29分钟内验证了96%的最大认证社区,而现有的拆分接近近距离验证,平均在58分钟内验证了73%的最大认证社区的73%。
translated by 谷歌翻译
Deep neural networks have achieved impressive experimental results in image classification, but can surprisingly be unstable with respect to adversarial perturbations, that is, minimal changes to the input image that cause the network to misclassify it. With potential applications including perception modules and end-to-end controllers for self-driving cars, this raises concerns about their safety. We develop a novel automated verification framework for feed-forward multi-layer neural networks based on Satisfiability Modulo Theory (SMT). We focus on safety of image classification decisions with respect to image manipulations, such as scratches or changes to camera angle or lighting conditions that would result in the same class being assigned by a human, and define safety for an individual decision in terms of invariance of the classification within a small neighbourhood of the original image. We enable exhaustive search of the region by employing discretisation, and propagate the analysis layer by layer. Our method works directly with the network code and, in contrast to existing methods, can guarantee that adversarial examples, if they exist, are found for the given region and family of manipulations. If found, adversarial examples can be shown to human testers and/or used to fine-tune the network. We implement the techniques using Z3 and evaluate them on state-of-the-art networks, including regularised and deep learning networks. We also compare against existing techniques to search for adversarial examples and estimate network robustness.
translated by 谷歌翻译
从数据中学到的分类器越来越多地用作安全是关键问题的系统中的组件。在这项工作中,我们通过称为安全订购约束的约束来提出针对分类器的正式安全概念。这些限制条件将分类器输出的类输出的顺序与输入的条件有关,并且表达足以编码文献中分类器安全规范的各种有趣的示例。对于使用神经网络实施的分类器,我们还提出了一种运行时机制,用于执行安全订购约束。我们的方法基于一个自我校正层,该层可证明,无论分类器输入的特征如何,它都可以产生安全的输出。我们将此层与现有的神经网络分类器组成,以构建自我校正网络(SC-NET),并证明除了提供安全的输出外,SC-NET还可以保证尽可能保留原始网络的分类精度。我们的方法独立于用于分类的神经网络的大小和体系结构,仅取决于指定的属性和网络输出的尺寸;因此,它可扩展到大型最新网络。我们表明,我们的方法可以针对GPU进行优化,从而在当前硬件上引入了少于1ms的运行时开销 - 即使在包含数十万个神经元和数百万参数的大型,广泛使用的网络上。
translated by 谷歌翻译
由于它们在计算机视觉,图像处理和其他人领域的优异性能,卷积神经网络具有极大的普及。不幸的是,现在众所周知,卷积网络通常产生错误的结果 - 例如,这些网络的输入的小扰动可能导致严重的分类错误。近年来提出了许多验证方法,以证明没有此类错误,但这些通常用于完全连接的网络,并且在应用于卷积网络时遭受加剧的可扩展性问题。为了解决这一差距,我们在这里介绍了CNN-ABS框架,特别是旨在验证卷积网络。 CNN-ABS的核心是一种抽象细化技术,它通过拆除卷积连接,以便在这种方式创造原始问题的过度逼近来简化验证问题;如果产生的问题变得过于抽象,它会恢复这些连接。 CNN-ABS旨在使用现有的验证引擎作为后端,我们的评估表明它可以显着提高最先进的DNN验证引擎的性能,平均降低运行时间15.7%。
translated by 谷歌翻译
由于机器学习(ML)系统变得普遍存在,因此保护其安全性至关重要。然而,最近已经证明,动机的对手能够通过使用语义转换扰乱测试数据来误导ML系统。虽然存在丰富的研究机构,但为ML模型提供了可提供的稳健性保证,以防止$ \ ell_p $ norm界限对抗对抗扰动,抵御语义扰动的保证仍然很广泛。在本文中,我们提供了TSS - 一种统一的框架,用于针对一般对抗性语义转换的鲁棒性认证。首先,根据每个转换的性质,我们将常见的变换划分为两类,即可解决的(例如,高斯模糊)和差异可解的(例如,旋转)变换。对于前者,我们提出了特定于转型的随机平滑策略并获得强大的稳健性认证。后者类别涵盖涉及插值错误的变换,我们提出了一种基于分层采样的新方法,以证明稳健性。我们的框架TSS利用这些认证策略并结合了一致性增强的培训,以提供严谨的鲁棒性认证。我们对十种挑战性语义转化进行了广泛的实验,并表明TSS显着优于现有技术。此外,据我们所知,TSS是第一种在大规模想象数据集上实现非竞争认证稳健性的方法。例如,我们的框架在ImageNet上实现了旋转攻击的30.4%认证的稳健准确性(在$ \ PM 30 ^ \ CIC $)。此外,要考虑更广泛的转换,我们展示了TSS对自适应攻击和不可预见的图像损坏,例如CIFAR-10-C和Imagenet-C。
translated by 谷歌翻译
We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.
translated by 谷歌翻译
深度神经网络(DNN)的巨大进步导致了各种任务的最先进的性能。然而,最近的研究表明,DNNS容易受到对抗的攻击,这在将这些模型部署到自动驾驶等安全关键型应用时,这使得非常关注。已经提出了不同的防御方法,包括:a)经验防御,通常可以在不提供稳健性认证的情况下再次再次攻击; b)可认真的稳健方法,由稳健性验证组成,提供了在某些条件下的任何攻击和相应的强大培训方法中的稳健准确性的下限。在本文中,我们系统化了可认真的稳健方法和相关的实用和理论意义和调查结果。我们还提供了在不同数据集上现有的稳健验证和培训方法的第一个全面基准。特别是,我们1)为稳健性验证和培训方法提供分类,以及总结代表性算法的方法,2)揭示这些方法中的特征,优势,局限性和基本联系,3)讨论当前的研究进展情况TNN和4的可信稳健方法的理论障碍,主要挑战和未来方向提供了一个开放的统一平台,以评估超过20种代表可认真的稳健方法,用于各种DNN。
translated by 谷歌翻译
基于基于不完整的神经网络验证如冠的绑定传播非常有效,可以显着加速基于神经网络的分支和绑定(BAB)。然而,绑定的传播不能完全处理由昂贵的线性编程(LP)求解器的BAB常规引入的神经元分割限制,导致界限和损伤验证效率。在这项工作中,我们开发了一种基于$ \ beta $ -cra所做的,一种基于新的绑定传播方法,可以通过从原始或双空间构造的可优化参数$ \ beta $完全编码神经元分割。当在中间层中联合优化时,$ \ Beta $ -CROWN通常会产生比具有神经元分裂约束的典型LP验证更好的界限,同时像GPU上的皇冠一样高效且并行化。适用于完全稳健的验证基准,使用BAB的$ \ Beta $ -CROWN比基于LP的BAB方法快三个数量级,并且比所有现有方法更快,同时产生较低的超时率。通过早期终止BAB,我们的方法也可用于有效的不完整验证。与强大的不完整验证者相比,我们始终如一地在许多设置中获得更高的验证准确性,包括基于凸屏障破碎技术的验证技术。与最严重但非常昂贵的Semidefinite编程(SDP)的不完整验证者相比,我们获得了更高的验证精度,验证时间较少三个级。我们的算法授权$ \ alpha,\ \β$ -craft(Alpha-Beta-Crown)验证者,VNN-Comp 2021中的获胜工具。我们的代码可在http://papercode.cc/betacrown提供
translated by 谷歌翻译
作为神经网络(NNS)越来越多地引入安全关键域,在部署之前越来越需要在部署之前正式验证NNS。在这项工作中,我们专注于NN等效的正式验证问题,其旨在证明两个NNS(例如原件和压缩版本)显示等效行为。已经提出了两种方法:混合整数线性编程和间隔传播。虽然第一种方法缺乏可扩展性,但后者仅适用于结构性相似的NN,其重量变化很小。我们纸张的贡献有四个部分。首先,我们通过证明epsilon-andatience问题是突出的,我们表现出理论结果。其次,我们扩展了Tran等人。单个NN几何路径枚举算法以多个NN的设置。在第三步中,我们实现了扩展算法,用于等价验证,评估其实际使用所需的优化。最后,我们执行比较评估,显示我们的方法优于前一种最先进的现有技术,两者,用于等效验证以及反例查找。
translated by 谷歌翻译
随着深度学习在关键任务系统中的越来越多的应用,越来越需要对神经网络的行为进行正式保证。确实,最近提出了许多用于验证神经网络的方法,但是这些方法通常以有限的可伸缩性或不足的精度而挣扎。许多最先进的验证方案中的关键组成部分是在网络中可以为特定输入域获得的神经元获得的值计算下限和上限 - 并且这些界限更紧密,验证的可能性越大,验证的可能性就越大。成功。计算这些边界的许多常见算法是符号结合传播方法的变化。其中,利用一种称为后替代的过程的方法特别成功。在本文中,我们提出了一种使背部替代产生更严格的界限的方法。为了实现这一目标,我们制定并最大程度地减少背部固定过程中发生的不精确错误。我们的技术是一般的,从某种意义上说,它可以将其集成到许多现有的符号结合的传播技术中,并且只有较小的修改。我们将方法作为概念验证工具实施,并且与执行背部替代的最先进的验证者相比,取得了有利的结果。
translated by 谷歌翻译
在过去的十年中,神经网络(NNS)已被广泛用于许多应用程序,包括安全系统,例如自主系统。尽管采用了新兴的采用,但众所周知,NNS容易受到对抗攻击的影响。因此,提供确保此类系统正常工作的保证非常重要。为了解决这些问题,我们介绍了一个修复不安全NNS W.R.T.的框架。安全规范,即利用可满足的模型理论(SMT)求解器。我们的方法能够通过仅修改其重量值的一些重量值来搜索新的,安全的NN表示形式。此外,我们的技术试图最大程度地提高与原始网络在其决策边界方面的相似性。我们进行了广泛的实验,以证明我们提出的框架能够产生安全NNS W.R.T.的能力。对抗性的鲁棒性特性,只有轻度的准确性损失(就相似性而言)。此外,我们将我们的方法与天真的基线进行比较,以证明其有效性。总而言之,我们提供了一种算法以自动修复具有安全性的算法,并建议一些启发式方法以提高其计算性能。当前,通过遵循这种方法,我们能够产生由分段线性relu激活函数组成的小型(即具有多达数百个参数)的小型(即具有多达数百个参数)。然而,我们的框架是可以合成NNS W.R.T.的一般框架。一阶逻辑规范的任何可决定片段。
translated by 谷歌翻译
语义图像扰动(例如缩放和旋转)已被证明很容易欺骗深神经网络(DNN)。因此,培训DNN对这些扰动有证明是鲁棒的,至关重要。但是,由于现有的确定性语义验证符非常缓慢,因此没有先前的工作能够将确定性语义鲁棒性的目标纳入训练程序。为了应对这些挑战,我们提出了认证的语义培训(CST),这是针对语义图像扰动的确定性认证鲁棒性的第一个培训框架。我们的框架利用了一种新颖的GPU优化验证器,与现有作品不同,它足以用于培训。我们的结果表明,与基于现有作品训练的网络相比,通过CST训练的网络始终达到更好的证明语义鲁棒性和清洁精度。
translated by 谷歌翻译
我们提出了一种基于随机平滑的图像和点云进行分割的新认证方法。该方法利用一种新颖的可扩展算法进行预测和认证,该算法正确说明了多次测试,这是确保统计保证所必需的。我们方法的关键是依靠已建立的多次测试校正机制,以及弃权分类单像素或点的能力,同时仍然坚固地分割整个输入。我们对综合数据和挑战数据集的实验评估,例如Pascal环境,城市景观和Shapenet,表明我们的算法可以首次实现现实世界中的竞争精度和认证保证。我们在https://github.com/eth-sri/sementation-smoothing上提供实施。
translated by 谷歌翻译