具有动量的随机梯度下降(SGD)被广泛用于训练现代深度学习体系结构。虽然可以很好地理解使用动量可以导致在各种环境中更快的收敛速率,但还观察到动量会产生更高的概括。先前的工作认为,动量在训练过程中稳定了SGD噪声,这会导致更高的概括。在本文中,我们采用了另一种观点,并首先在经验上表明,与梯度下降(GD)相比,具有动量(GD+M)的梯度下降在某些深度学习问题中显着改善了概括。从这个观察结果,我们正式研究了动量如何改善概括。我们设计了一个二进制分类设置,在该设置中,当两种算法都类似地初始化时,经过GD+M训练的单个隐藏层(过度参数化)卷积神经网络比使用GD训练的同一网络更好地概括了。我们分析中的关键见解是,动量在示例共享某些功能但边距不同的数据集中是有益的。与记住少量数据数据的GD相反,GD+M仍然通过其历史梯度来了解这些数据中的功能。最后,我们从经验上验证了我们的理论发现。
translated by 谷歌翻译
现代神经网络通常具有很大的表现力,并且可以接受训练以使培训数据过高,同时仍能达到良好的测试性能。这种现象被称为“良性过度拟合”。最近,从理论角度出现了一系列研究“良性过度拟合”的作品。但是,它们仅限于线性模型或内核/随机特征模型,并且仍然缺乏关于何时以及如何在神经网络中发生过度拟合的理论理解。在本文中,我们研究了训练两层卷积神经网络(CNN)的良性过度拟合现象。我们表明,当信噪比满足一定条件时,通过梯度下降训练的两层CNN可以实现任意小的训练和测试损失。另一方面,当这种情况无法成立时,过度拟合就会有害,并且获得的CNN只能实现恒定的测试损失。这些共同证明了由信噪比驱动的良性过度拟合和有害过度拟合之间的急剧过渡。据我们所知,这是第一部精确地表征良性过度拟合在训练卷积神经网络中的条件的工作。
translated by 谷歌翻译
尽管他们的超大容量过度装备能力,但是由特定优化算法训练的深度神经网络倾向于概括到看不见的数据。最近,研究人员通过研究优化算法的隐式正则化效果来解释它。卓越的进展是工作(Lyu&Li,2019),其证明了梯度下降(GD)最大化了均匀深神经网络的余量。除GD外,诸如Adagrad,RMSProp和Adam之类的自适应算法由于其快速培训过程而流行。然而,仍然缺乏适应性优化算法的概括的理论保证。在本文中,我们研究了自适应优化算法的隐式正则化,当它们在均匀深神经网络上优化逻辑损失时。我们证明了在调节器(如亚当和RMSProp)中采用指数移动平均策略的自适应算法可以最大化神经网络的余量,而Adagrad直接在调节器中总和历史平方梯度。它表明了调节剂设计中指数移动平均策略的概括的优越性。从技术上讲,我们提供统一的框架,通过构建新的自适应梯度流量和代理余量来分析自适应优化算法的会聚方向。我们的实验可以很好地支持适应性优化算法的会聚方向的理论发现。
translated by 谷歌翻译
引入了归一化层(例如,批处理归一化,层归一化),以帮助在非常深的网中获得优化困难,但它们显然也有助于概括,即使在不太深入的网中也是如此。由于长期以来的信念,即最小的最小值导致更好的概括,本文提供了数学分析和支持实验,这表明归一化(与伴随的重量赛一起)鼓励GD降低损失表面的清晰度。鉴于损失是标准不变的,这是标准化的已知结果,因此仔细地定义了“清晰度”。具体而言,对于具有归一化的相当广泛的神经网类,我们的理论解释了有限学习率的GD如何进入所谓的稳定边缘(EOS)制度,并通过连续的清晰度来表征GD的轨迹 - 还原流。
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
良性过度拟合,即插值模型在存在嘈杂数据的情况下很好地推广的现象,首先是在接受梯度下降训练的神经网络模型中观察到的。为了更好地理解这一经验观察,我们考虑了通过梯度下降训练的两层神经网络的概括误差,后者是随机初始化后的逻辑损失。我们假设数据来自分离良好的集体条件对数符合分布,并允许训练标签的持续部分被对手损坏。我们表明,在这种情况下,神经网络表现出良性过度拟合:它们可以驱动到零训练错误,完美拟合所有嘈杂的训练标签,并同时达到最小值最佳测试错误。与以前需要线性或基于内核预测的良性过度拟合的工作相反,我们的分析在模型和学习动力学基本上是非线性的环境中。
translated by 谷歌翻译
最新工作的一条有影响力的线重点关注的是针对可分离的线性分类的非规范梯度学习程序的泛化特性,并具有指数级的损失函数。这种方法概括地概括的能力归因于它们对大幅度预测指标的隐含偏见,无论是渐近的还是有限的时间。我们为此概括提供了另一个统一的解释,并将其与优化目标的两个简单属性相关联,我们将其称为可实现性和自我限制性。我们介绍了通过这些特性的不受约束随机凸优化的一般设置,并通过算法稳定性镜头分析梯度方法的概括。在这种更广泛的环境中,我们获得了梯度下降和随机梯度下降的尖锐稳定性边界,这些梯度下降即使适用于大量梯度步骤,并使用它们来得出这些算法的通用泛化界限。最后,作为一般边界的直接应用,我们返回使用可分离数据的线性分类设置,并为梯度下降和随机梯度下降建立了几种新颖的测试损失和测试精度界限,用于各种尾巴衰减速率的多种损耗函数。在某些情况下,我们的界限显着改善了文献中现有的概括误差界限。
translated by 谷歌翻译
过度分化的深网络的泛化神秘具有有动力的努力,了解梯度下降(GD)如何收敛到概括井的低损耗解决方案。现实生活中的神经网络从小随机值初始化,并以分类的“懒惰”或“懒惰”或“NTK”的训练训练,分析更成功,以及最近的结果序列(Lyu和Li ,2020年; Chizat和Bach,2020; Ji和Telgarsky,2020)提供了理论证据,即GD可以收敛到“Max-ramin”解决方案,其零损失可能呈现良好。但是,仅在某些环境中证明了余量的全球最优性,其中神经网络无限或呈指数级宽。目前的纸张能够为具有梯度流动训练的两层泄漏的Relu网,无论宽度如何,都能为具有梯度流动的双层泄漏的Relu网建立这种全局最优性。分析还为最近的经验研究结果(Kalimeris等,2019)给出了一些理论上的理由,就GD的所谓简单的偏见为线性或其他“简单”的解决方案,特别是在训练中。在悲观方面,该论文表明这种结果是脆弱的。简单的数据操作可以使梯度流量会聚到具有次优裕度的线性分类器。
translated by 谷歌翻译
It has been observed in practice that applying pruning-at-initialization methods to neural networks and training the sparsified networks can not only retain the testing performance of the original dense models, but also sometimes even slightly boost the generalization performance. Theoretical understanding for such experimental observations are yet to be developed. This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization. Specifically, this work considers a classification task for overparameterized two-layer neural networks, where the network is randomly pruned according to different rates at the initialization. It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero and the network exhibits good generalization performance. More surprisingly, the generalization bound gets better as the pruning fraction gets larger. To complement this positive result, this work further shows a negative result: there exists a large pruning fraction such that while gradient descent is still able to drive the training loss toward zero (by memorizing noise), the generalization performance is no better than random guessing. This further suggests that pruning can change the feature learning process, which leads to the performance drop of the pruned neural network. Up to our knowledge, this is the \textbf{first} generalization result for pruned neural networks, suggesting that pruning can improve the neural network's generalization.
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译
The nonconvex formulation of matrix completion problem has received significant attention in recent years due to its affordable complexity compared to the convex formulation. Gradient descent (GD) is the simplest yet efficient baseline algorithm for solving nonconvex optimization problems. The success of GD has been witnessed in many different problems in both theory and practice when it is combined with random initialization. However, previous works on matrix completion require either careful initialization or regularizers to prove the convergence of GD. In this work, we study the rank-1 symmetric matrix completion and prove that GD converges to the ground truth when small random initialization is used. We show that in logarithmic amount of iterations, the trajectory enters the region where local convergence occurs. We provide an upper bound on the initialization size that is sufficient to guarantee the convergence and show that a larger initialization can be used as more samples are available. We observe that implicit regularization effect of GD plays a critical role in the analysis, and for the entire trajectory, it prevents each entry from becoming much larger than the others.
translated by 谷歌翻译
我们检查了在未注册的逻辑回归问题上的梯度下降,并在线性可分离数据集上具有均匀的线性预测指标。我们显示了预测变量收敛到最大边缘(硬边缘SVM)解决方案的方向。结果还推广到其他单调的损失函数,在无穷大时降低了损失功能,多级问题,并在某个受限的环境中训练在深网中的重量层。此外,我们表明这种融合非常慢,只有在损失本身的融合中的对数。这可以有助于解释即使训练错误为零,并且训练损失非常小,并且正如我们所显示的,即使验证损失增加了,也可以继续优化逻辑或跨透明度损失的好处。我们的方法还可以帮助理解隐式正则化n更复杂的模型以及其他优化方法。
translated by 谷歌翻译
当数据自然分配到通过基础图的代理商之间,分散学习提供了隐私和沟通效率。通过过度参数化的学习设置,在该设置中,在该设置中训练了零训练损失,我们研究了分散学习的分散学习算法和概括性能,并在可分离的数据上下降。具体而言,对于分散的梯度下降(DGD)和各种损失函数,在无穷大(包括指数损失和逻辑损失)中渐近为零,我们得出了新的有限时间泛化界限。这补充了一长串最近的工作,该工作研究了概括性能和梯度下降的隐含偏见,而不是可分离的数据,但迄今为止,梯度下降的偏见仅限于集中学习方案。值得注意的是,我们的概括范围匹配其集中式同行。这背后的关键和独立感兴趣的是,在一类自我结合的损失方面建立了关于训练损失和DGD的传记率的新界限。最后,在算法方面,我们设计了改进的基于梯度的例程,可分离数据,并在经验上证明了训练和概括性能方面的加速命令。
translated by 谷歌翻译
Adaptive optimization methods are well known to achieve superior convergence relative to vanilla gradient methods. The traditional viewpoint in optimization, particularly in convex optimization, explains this improved performance by arguing that, unlike vanilla gradient schemes, adaptive algorithms mimic the behavior of a second-order method by adapting to the global geometry of the loss function. We argue that in the context of neural network optimization, this traditional viewpoint is insufficient. Instead, we advocate for a local trajectory analysis. For iterate trajectories produced by running a generic optimization algorithm OPT, we introduce $R^{\text{OPT}}_{\text{med}}$, a statistic that is analogous to the condition number of the loss Hessian evaluated at the iterates. Through extensive experiments, we show that adaptive methods such as Adam bias the trajectories towards regions where $R^{\text{Adam}}_{\text{med}}$ is small, where one might expect faster convergence. By contrast, vanilla gradient methods like SGD bias the trajectories towards regions where $R^{\text{SGD}}_{\text{med}}$ is comparatively large. We complement these empirical observations with a theoretical result that provably demonstrates this phenomenon in the simplified setting of a two-layer linear network. We view our findings as evidence for the need of a new explanation of the success of adaptive methods, one that is different than the conventional wisdom.
translated by 谷歌翻译
Existing analyses of neural network training often operate under the unrealistic assumption of an extremely small learning rate. This lies in stark contrast to practical wisdom and empirical studies, such as the work of J. Cohen et al. (ICLR 2021), which exhibit startling new phenomena (the "edge of stability" or "unstable convergence") and potential benefits for generalization in the large learning rate regime. Despite a flurry of recent works on this topic, however, the latter effect is still poorly understood. In this paper, we take a step towards understanding genuinely non-convex training dynamics with large learning rates by performing a detailed analysis of gradient descent for simplified models of two-layer neural networks. For these models, we provably establish the edge of stability phenomenon and discover a sharp phase transition for the step size below which the neural network fails to learn "threshold-like" neurons (i.e., neurons with a non-zero first-layer bias). This elucidates one possible mechanism by which the edge of stability can in fact lead to better generalization, as threshold neurons are basic building blocks with useful inductive bias for many tasks.
translated by 谷歌翻译
清晰度感知最小化(SAM)是一种最近的训练方法,它依赖于最严重的重量扰动,可显着改善各种环境中的概括。我们认为,基于pac-bayes概括结合的SAM成功的现有理由,而收敛到平面最小值的想法是不完整的。此外,没有解释说在SAM中使用$ m $ sharpness的成功,这对于概括而言至关重要。为了更好地理解SAM的这一方面,我们理论上分析了其对角线性网络的隐式偏差。我们证明,SAM总是选择一种比标准梯度下降更好的解决方案,用于某些类别的问题,并且通过使用$ m $ -sharpness可以放大这种效果。我们进一步研究了隐性偏见在非线性网络上的特性,在经验上,我们表明使用SAM进行微调的标准模型可以导致显着的概括改进。最后,当与随机梯度一起使用时,我们为非凸目标提供了SAM的收敛结果。我们从经验上说明了深层网络的这些结果,并讨论了它们与SAM的概括行为的关系。我们的实验代码可在https://github.com/tml-epfl/understanding-sam上获得。
translated by 谷歌翻译
批准方法,例如批处理[Ioffe和Szegedy,2015],体重[Salimansand Kingma,2016],实例[Ulyanov等,2016]和层归一化[Baet al。,2016]已广泛用于现代机器学习中。在这里,我们研究了体重归一化方法(WN)方法[Salimans和Kingma,2016年],以及一种称为重扎式投影梯度下降(RPGD)的变体,用于过多散热性最小二乘回归。 WN和RPGD用比例G和一个单位向量W重新绘制权重,因此目标函数变为非convex。我们表明,与原始目标的梯度下降相比,这种非凸式配方具有有益的正则化作用。这些方法适应性地使重量正规化并收敛于最小L2规范解决方案,即使初始化远非零。对于G和W的某些步骤,我们表明它们可以收敛于最小规范解决方案。这与梯度下降的行为不同,梯度下降的行为仅在特征矩阵范围内的一个点开始时才收敛到最小规范解,因此对初始化更敏感。
translated by 谷歌翻译
数据增强是机器学习管道的基石,但其理论基础尚不清楚。它只是人为增加数据集大小的一种方法吗?还是鼓励模型满足某些不变性?在这项工作中,我们考虑了另一个角度,我们研究了数据增强对学习过程动态的影响。我们发现,数据增强可以改变各种功能的相对重要性,从而有效地使某些信息性但难以学习的功能更有可能在学习过程中捕获。重要的是,我们表明,对于非线性模型,例如神经网络,这种效果更为明显。我们的主要贡献是对Allen-Zhu和Li [2020]最近提出的多视图数据模型中两层卷积神经网络的学习动态数据的详细分析。我们通过进一步的实验证据来补充这一分析,证明数据增加可以看作是特征操纵。
translated by 谷歌翻译
Artificial neural networks are functions depending on a finite number of parameters typically encoded as weights and biases. The identification of the parameters of the network from finite samples of input-output pairs is often referred to as the \emph{teacher-student model}, and this model has represented a popular framework for understanding training and generalization. Even if the problem is NP-complete in the worst case, a rapidly growing literature -- after adding suitable distributional assumptions -- has established finite sample identification of two-layer networks with a number of neurons $m=\mathcal O(D)$, $D$ being the input dimension. For the range $D<m<D^2$ the problem becomes harder, and truly little is known for networks parametrized by biases as well. This paper fills the gap by providing constructive methods and theoretical guarantees of finite sample identification for such wider shallow networks with biases. Our approach is based on a two-step pipeline: first, we recover the direction of the weights, by exploiting second order information; next, we identify the signs by suitable algebraic evaluations, and we recover the biases by empirical risk minimization via gradient descent. Numerical results demonstrate the effectiveness of our approach.
translated by 谷歌翻译
非凸优化的传统分析通常取决于平滑度的假设,即要求梯度为Lipschitz。但是,最近的证据表明,这种平滑度条件并未捕获一些深度学习目标功能的特性,包括涉及复发性神经网络和LSTM的函数。取而代之的是,他们满足了更轻松的状况,并具有潜在的无界光滑度。在这个轻松的假设下,从理论和经验上表明,倾斜的SGD比香草具有优势。在本文中,我们表明,在解决此类情况时,剪辑对于ADAM型算法是不可或缺的:从理论上讲,我们证明了广义标志GD算法可以获得与带有剪辑的SGD相似的收敛速率,但根本不需要显式剪辑。一端的这个算法家族恢复了符号,另一端与受欢迎的亚当算法非常相似。我们的分析强调了动量在分析符号类型和ADAM型算法中发挥作用的关键作用:它不仅降低了噪声的影响,因此在先前的符号分析中消除了大型迷你批次的需求显着降低了无界平滑度和梯度规范的影响。我们还将这些算法与流行的优化器进行了比较,在一组深度学习任务上,观察到我们可以在击败其他人的同时匹配亚当的性能。
translated by 谷歌翻译