学习来自观察数据的行为模式一直是运动预测的遗传方法。然而,目前的范式遭受了两种缺点:协会变化下的脆性和知识转移的低效。在这项工作中,我们建议从因果表现形式解决这些挑战。我们首先介绍了运动预测的因果形式主义,这将问题作为一种动态过程,其中三组潜在变量,即不变的机制,风格混乱和虚假功能。然后我们介绍一个学习框架,分别对待每个组:(i)与从不同地点收集的数据集的共同做法不同,我们通过不变性的损失来利用它们的微妙区分,鼓励模型抑制虚假相关; (ii)我们设计了一种模块化的架构,可以修理不变机制和风格混淆的表示,以近似因果图; (iii)我们介绍了一种风格的一致性损失,不仅强制实施了风格表示的结构,而且还用作自我监控信号,以便在飞行中进行测试时间改进。合成和实时数据集的实验结果表明,我们的三个提出的组件显着提高了学习运动表示的鲁棒性和可重用性,优于出现的先前最先进的运动预测模型,用于分发外概括和低次转移。
translated by 谷歌翻译
Deep motion forecasting models have achieved great success when trained on a massive amount of data. Yet, they often perform poorly when training data is limited. To address this challenge, we propose a transfer learning approach for efficiently adapting pre-trained forecasting models to new domains, such as unseen agent types and scene contexts. Unlike the conventional fine-tuning approach that updates the whole encoder, our main idea is to reduce the amount of tunable parameters that can precisely account for the target domain-specific motion style. To this end, we introduce two components that exploit our prior knowledge of motion style shifts: (i) a low-rank motion style adapter that projects and adjusts the style features at a low-dimensional bottleneck; and (ii) a modular adapter strategy that disentangles the features of scene context and motion history to facilitate a fine-grained choice of adaptation layers. Through extensive experimentation, we show that our proposed adapter design, coined MoSA, outperforms prior methods on several forecasting benchmarks.
translated by 谷歌翻译
Graph machine learning has been extensively studied in both academia and industry. Although booming with a vast number of emerging methods and techniques, most of the literature is built on the in-distribution hypothesis, i.e., testing and training graph data are identically distributed. However, this in-distribution hypothesis can hardly be satisfied in many real-world graph scenarios where the model performance substantially degrades when there exist distribution shifts between testing and training graph data. To solve this critical problem, out-of-distribution (OOD) generalization on graphs, which goes beyond the in-distribution hypothesis, has made great progress and attracted ever-increasing attention from the research community. In this paper, we comprehensively survey OOD generalization on graphs and present a detailed review of recent advances in this area. First, we provide a formal problem definition of OOD generalization on graphs. Second, we categorize existing methods into three classes from conceptually different perspectives, i.e., data, model, and learning strategy, based on their positions in the graph machine learning pipeline, followed by detailed discussions for each category. We also review the theories related to OOD generalization on graphs and introduce the commonly used graph datasets for thorough evaluations. Finally, we share our insights on future research directions. This paper is the first systematic and comprehensive review of OOD generalization on graphs, to the best of our knowledge.
translated by 谷歌翻译
Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions.
translated by 谷歌翻译
现实世界的分类问题必须与域移位竞争,该域移动是部署模型的域之间的(潜在)不匹配以及收集训练数据的域。处理此类问题的方法必须指定域之间哪种结构与什么变化。一个自然的假设是,因果关系(结构)关系在所有领域都是不变的。然后,很容易学习仅取决于其因果父母的标签$ y $的预测指标。但是,许多现实世界中的问题是“反农产品”,因为$ y $是协变量$ x $的原因 - 在这种情况下,$ y $没有因果父母,而天真的因果不变性是没有用的。在本文中,我们研究了在特定的域转移概念下的表示形式学习,该概念既尊重因果不变性又自然处理“反毒物”结构。我们展示了如何利用域的共享因果结构来学习一个表示不变预测因子的表示,并且还允许在新域中快速适应。关键是将因果假设转化为学习原理,这些学习原理“不变”和“不稳定”特征。关于合成数据和现实世界数据的实验证明了所提出的学习算法的有效性。代码可在https://github.com/ybjiaang/actir上找到。
translated by 谷歌翻译
准确预测交通参与者的可能行为是自治车辆的基本能力。由于自主车辆需要在动态变化的环境中导航,因此它们预计无论它们在哪里以及它们遇到的驾驶环境如何,它们都会准确。因此,当在现实世界中部署自动车辆时,对看不见域的概念能力对于预测模型至关重要。在本文中,我们旨在解决车辆意图预测任务的域泛化问题,提出了基于因果序列域泛化(CTSDG)模型。我们构建用于车辆意图预测任务的结构因果模型,以学习域泛型输入驱动数据的不变表示。我们进一步将反复潜变量模型进一步集成到我们的结构因果模型中,以更好地捕获时间序列输入数据的时间潜在依赖关系。我们的方法的有效性通过现实世界的驾驶数据进行评估。我们证明,与其他最新的域泛化和行为预测方法相比,我们所提出的方法对预测精度一致地改善。
translated by 谷歌翻译
最近的学习不变(因果)特征(OOD)概括最近引起了广泛的关注,在建议中不变风险最小化(IRM)(Arjovsky等,2019)是一个显着的解决方案。尽管其对线性回归的理论希望,但在线性分类问题中使用IRM的挑战仍然存在(Rosenfeld等,2020; Nagarajan等,2021)。沿着这一行,最近的一项研究(Arjovsky等人,2019年)迈出了第一步,并提出了基于信息瓶颈的不变风险最小化的学习原理(IB-imm)。在本文中,我们首先表明(Arjovsky等人,2019年)使用不变特征的支持重叠的关键假设对于保证OOD泛化是相当强大的,并且在没有这种假设的情况下仍然可以实现最佳解决方案。为了进一步回答IB-IRM是否足以在线性分类问题中学习不变特征的问题,我们表明IB-IRM在两种情况下仍将失败,无论是否不变功能捕获有关标签的所有信息。为了解决此类失败,我们提出了一个\ textit {基于反事实的信息瓶颈(CSIB)}学习算法,该算法可恢复不变的功能。即使从单个环境访问数据时,提出的算法也可以工作,并且在理论上对二进制和多类问题都具有一致的结果。我们对三个合成数据集进行了经验实验,以验证我们提出的方法的功效。
translated by 谷歌翻译
最近证明,接受SGD训练的神经网络优先依赖线性预测的特征,并且可以忽略复杂的,同样可预测的功能。这种简单性偏见可以解释他们缺乏分布(OOD)的鲁棒性。学习任务越复杂,统计工件(即选择偏见,虚假相关性)的可能性就越大比学习的机制更简单。我们证明可以减轻简单性偏差并改善了OOD的概括。我们使用对其输入梯度对齐的惩罚来训练一组类似的模型以不同的方式拟合数据。我们从理论和经验上展示了这会导致学习更复杂的预测模式的学习。 OOD的概括从根本上需要超出I.I.D.示例,例如多个培训环境,反事实示例或其他侧面信息。我们的方法表明,我们可以将此要求推迟到独立的模型选择阶段。我们获得了SOTA的结果,可以在视觉域偏置数据和概括方面进行视觉识别。该方法 - 第一个逃避简单性偏见的方法 - 突出了需要更好地理解和控制深度学习中的归纳偏见。
translated by 谷歌翻译
尽管最近在欧几里得数据(例如图像)上使用不变性原理(OOD)概括(例如图像),但有关图数据的研究仍然受到限制。与图像不同,图形的复杂性质给采用不变性原理带来了独特的挑战。特别是,图表上的分布变化可以以多种形式出现,例如属性和结构,因此很难识别不变性。此外,在欧几里得数据上通常需要的域或环境分区通常需要的图形可能非常昂贵。为了弥合这一差距,我们提出了一个新的框架,以捕获图形的不变性,以在各种分配变化下进行保证的OOD概括。具体而言,我们表征了具有因果模型的图形上的潜在分布变化,得出结论,当模型仅关注包含有关标签原因最多信息的子图时,可以实现图形上的OOD概括。因此,我们提出了一个信息理论目标,以提取最大地保留不变的阶级信息的所需子图。用这些子图学习不受分配变化的影响。对合成和现实世界数据集进行的广泛实验,包括在AI ADED药物发现中充满挑战的环境,验证了我们方法的上等OOD概括能力。
translated by 谷歌翻译
一个令人着迷的假设是,人类和动物的智力可以通过一些原则(而不是启发式方法的百科全书清单)来解释。如果这个假设是正确的,我们可以更容易地理解自己的智能并建造智能机器。就像物理学一样,原理本身不足以预测大脑等复杂系统的行为,并且可能需要大量计算来模拟人类式的智力。这一假设将表明,研究人类和动物所剥削的归纳偏见可以帮助阐明这些原则,并为AI研究和神经科学理论提供灵感。深度学习已经利用了几种关键的归纳偏见,这项工作考虑了更大的清单,重点是关注高级和顺序有意识的处理的工作。阐明这些特定原则的目的是,它们有可能帮助我们建立从人类的能力中受益于灵活分布和系统概括的能力的AI系统,目前,这是一个领域艺术机器学习和人类智力。
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
深度加强学习概括(RL)的研究旨在产生RL算法,其政策概括为在部署时间进行新的未经调整情况,避免对其培训环境的过度接受。如果我们要在现实世界的情景中部署强化学习算法,那么解决这一点至关重要,那么环境将多样化,动态和不可预测。该调查是这个新生领域的概述。我们为讨论不同的概括问题提供统一的形式主义和术语,在以前的作品上建立不同的概括问题。我们继续对现有的基准进行分类,以及用于解决泛化问题的当前方法。最后,我们提供了对现场当前状态的关键讨论,包括未来工作的建议。在其他结论之外,我们认为,采取纯粹的程序内容生成方法,基准设计不利于泛化的进展,我们建议快速在线适应和将RL特定问题解决作为未来泛化方法的一些领域,我们推荐在UniTexplorated问题设置中构建基准测试,例如离线RL泛化和奖励函数变化。
translated by 谷歌翻译
Visual reinforcement learning (RL), which makes decisions directly from high-dimensional visual inputs, has demonstrated significant potential in various domains. However, deploying visual RL techniques in the real world remains challenging due to their low sample efficiency and large generalization gaps. To tackle these obstacles, data augmentation (DA) has become a widely used technique in visual RL for acquiring sample-efficient and generalizable policies by diversifying the training data. This survey aims to provide a timely and essential review of DA techniques in visual RL in recognition of the thriving development in this field. In particular, we propose a unified framework for analyzing visual RL and understanding the role of DA in it. We then present a principled taxonomy of the existing augmentation techniques used in visual RL and conduct an in-depth discussion on how to better leverage augmented data in different scenarios. Moreover, we report a systematic empirical evaluation of DA-based techniques in visual RL and conclude by highlighting the directions for future research. As the first comprehensive survey of DA in visual RL, this work is expected to offer valuable guidance to this emerging field.
translated by 谷歌翻译
仿真是对机器人系统(例如自动驾驶汽车)进行扩展验证和验证的关键。尽管高保真物理和传感器模拟取得了进步,但在模拟道路使用者的现实行为方面仍然存在一个危险的差距。这是因为,与模拟物理和图形不同,设计人类行为的第一个原理模型通常是不可行的。在这项工作中,我们采用了一种数据驱动的方法,并提出了一种可以学会从现实世界驱动日志中产生流量行为的方法。该方法通过将交通仿真问题分解为高级意图推理和低级驾驶行为模仿,通过利用驾驶行为的双层层次结构来实现高样本效率和行为多样性。该方法还结合了一个计划模块,以获得稳定的长马行为。我们从经验上验证了我们的方法,即交通模拟(位)的双层模仿,并具有来自两个大规模驾驶数据集的场景,并表明位表明,在现实主义,多样性和长途稳定性方面可以达到平衡的交通模拟性能。我们还探索了评估行为现实主义的方法,并引入了一套评估指标以进行交通模拟。最后,作为我们的核心贡献的一部分,我们开发和开源一个软件工具,该工具将跨不同驱动数据集的数据格式统一,并将现有数据集将场景转换为交互式仿真环境。有关其他信息和视频,请参见https://sites.google.com/view/nvr-bits2022/home
translated by 谷歌翻译
研究兴趣大大增加了将数据驱动方法应用于力学问题的问题。尽管传统的机器学习(ML)方法已经实现了许多突破,但它们依赖于以下假设:培训(观察到的)数据和测试(看不见)数据是独立的且分布相同的(i.i.d)。因此,当应用于未知的测试环境和数据分布转移的现实世界力学问题时,传统的ML方法通常会崩溃。相反,分布(OOD)的概括假定测试数据可能会发生变化(即违反I.I.D.假设)。迄今为止,已经提出了多种方法来改善ML方法的OOD概括。但是,由于缺乏针对OOD回归问题的基准数据集,因此这些OOD方法在主导力学领域的回归问题上的效率仍然未知。为了解决这个问题,我们研究了机械回归问题的OOD泛化方法的性能。具体而言,我们确定了三个OOD问题:协变量移位,机制移位和采样偏差。对于每个问题,我们创建了两个基准示例,以扩展机械MNIST数据集收集,并研究了流行的OOD泛化方法在这些机械特定的回归问题上的性能。我们的数值实验表明,在大多数情况下,与传统的ML方法相比,在大多数情况下,在这些OOD问题上的传统ML方法的性能更好,但迫切需要开发更强大的OOD概括方法,这些方法在多个OOD场景中有效。总体而言,我们希望这项研究以及相关的开放访问基准数据集将进一步开发用于机械特定回归问题的OOD泛化方法。
translated by 谷歌翻译
处理严重的级别不平衡对现实世界的应用构成了重大挑战,特别是当少数群体课程的准确分类和泛化是主要兴趣时。在计算机视觉中,从长尾数据集学习是一种重复主题,特别是对于自然图像数据集。虽然现有解决方案主要吸引采样或加权调整,以缓解病理不平衡,或强加归纳偏差,以优先考虑非杂散关联,以提高基于因果关系的不耐性原则的示例效率和模型泛化。我们的提议介绍了元分布式场景,其中数据生成机制在标签条件特征分布上不变。即使相应的特征分布表现出明显的差异,这种因果假设能够从主导类到所代价的对应物中的高效知识转移。这使我们能够利用因果关系程序来扩大少数阶级的代表性。我们的开发与现有的极端分类技术正交,因此可以无缝集成。我们提案的效用以广泛的综合性和现实世界计算机视觉任务验证,防止了SOTA解决方案。
translated by 谷歌翻译
We propose a Target Conditioned Representation Independence (TCRI) objective for domain generalization. TCRI addresses the limitations of existing domain generalization methods due to incomplete constraints. Specifically, TCRI implements regularizers motivated by conditional independence constraints that are sufficient to strictly learn complete sets of invariant mechanisms, which we show are necessary and sufficient for domain generalization. Empirically, we show that TCRI is effective on both synthetic and real-world data. TCRI is competitive with baselines in average accuracy while outperforming them in worst-domain accuracy, indicating desired cross-domain stability.
translated by 谷歌翻译
Learning models that gracefully handle distribution shifts is central to research on domain generalization, robust optimization, and fairness. A promising formulation is domain-invariant learning, which identifies the key issue of learning which features are domain-specific versus domaininvariant. An important assumption in this area is that the training examples are partitioned into "domains" or "environments". Our focus is on the more common setting where such partitions are not provided. We propose EIIL, a general framework for domain-invariant learning that incorporates Environment Inference to directly infer partitions that are maximally informative for downstream Invariant Learning. We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels, and significantly outperforms ERM on worst-group performance in the Waterbirds and CivilComments datasets. Finally, we establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
translated by 谷歌翻译
域泛化(DG)方法旨在开发概括到测试分布与训练数据不同的设置的模型。在本文中,我们专注于多源零拍DG的挑战性问题,其中来自多个源域的标记训练数据可用,但无法从目标域中访问数据。虽然这个问题已成为研究的重要话题,但令人惊讶的是,将所有源数据汇集在一起​​和培训单个分类器的简单解决方案在标准基准中具有竞争力。更重要的是,即使在不同域中明确地优化不变性的复杂方法也不一定提供对ERM的非微不足道的增益。在本文中,我们首次研究了预先指定的域标签和泛化性能之间的重要链接。使用动机案例研究和分布稳健优化算法的新变种,我们首先演示了如何推断的自定义域组可以通过数据集的原始域标签来实现一致的改进。随后,我们介绍了一种用于多域泛化,Muldens的一般方法,它使用基于ERM的深度合并骨干,并通过元优化算法执行隐式域重标。使用对多个标准基准测试的经验研究,我们表明Muldens不需要定制增强策略或特定于数据集的培训过程,始终如一地优于ERM,通过显着的边距,即使在比较时也会产生最先进的泛化性能对于利用域标签的现有方法。
translated by 谷歌翻译
学习数据背后的因果结构对于改善概括和获得高质量的解释是无价的。我们提出了一个新颖的框架,不变结构学习(ISL),旨在通过利用概括作为指示来改善因果结构发现。 ISL将数据分配到不同的环境中,并通过施加一致性约束来学习一个在不同环境中不变的结构。然后,聚集机制基于图形结构选择最佳分类器,该图形结构与从单个环境中学到的结构相比,更准确地反映了数据中的因果机制。此外,我们将ISL扩展到一个自制的学习环境,在该设置中,准确的因果结构发现不依赖任何标签。这种自我监督的ISL通过迭代设置不同的节点作为目标来利用不变的因果关系。在合成和现实世界数据集上,我们证明了ISL准确地发现因果结构,优于替代方法,并且对具有显着分布变化的数据集产生了卓越的概括。
translated by 谷歌翻译