域泛化(DG)方法旨在开发概括到测试分布与训练数据不同的设置的模型。在本文中,我们专注于多源零拍DG的挑战性问题,其中来自多个源域的标记训练数据可用,但无法从目标域中访问数据。虽然这个问题已成为研究的重要话题,但令人惊讶的是,将所有源数据汇集在一起​​和培训单个分类器的简单解决方案在标准基准中具有竞争力。更重要的是,即使在不同域中明确地优化不变性的复杂方法也不一定提供对ERM的非微不足道的增益。在本文中,我们首次研究了预先指定的域标签和泛化性能之间的重要链接。使用动机案例研究和分布稳健优化算法的新变种,我们首先演示了如何推断的自定义域组可以通过数据集的原始域标签来实现一致的改进。随后,我们介绍了一种用于多域泛化,Muldens的一般方法,它使用基于ERM的深度合并骨干,并通过元优化算法执行隐式域重标。使用对多个标准基准测试的经验研究,我们表明Muldens不需要定制增强策略或特定于数据集的培训过程,始终如一地优于ERM,通过显着的边距,即使在比较时也会产生最先进的泛化性能对于利用域标签的现有方法。
translated by 谷歌翻译
机器学习系统通常假设训练和测试分布是相同的。为此,关键要求是开发可以概括到未经看不见的分布的模型。领域泛化(DG),即分销概括,近年来引起了越来越令人利益。域概括处理了一个具有挑战性的设置,其中给出了一个或几个不同但相关域,并且目标是学习可以概括到看不见的测试域的模型。多年来,域概括地区已经取得了巨大进展。本文提出了对该地区最近进步的首次审查。首先,我们提供了域泛化的正式定义,并讨论了几个相关领域。然后,我们彻底审查了与域泛化相关的理论,并仔细分析了泛化背后的理论。我们将最近的算法分为三个类:数据操作,表示学习和学习策略,并为每个类别详细介绍几种流行的算法。第三,我们介绍常用的数据集,应用程序和我们的开放源代码库进行公平评估。最后,我们总结了现有文学,并为未来提供了一些潜在的研究主题。
translated by 谷歌翻译
部署的ML模型的基本要求是从与培训不同的测试分布中汲取的数据概括。解决此问题的一个流行解决方案是,仅使用未标记的数据将预训练的模型调整为新的域。在本文中,我们关注该问题的挑战性变体,其中访问原始源数据受到限制。虽然完全测试时间适应(FTTA)和无监督的域适应性(UDA)密切相关,但由于大多数UDA方法需要访问源数据,因此UDA的进展不容易适用于TTA。因此,我们提出了一种新方法,即Cattan,它通过放松了通过新颖的深层子空间对准策略来放松访问整个源数据的需求,从而弥合了UDA和FTTA。通过为源数据存储的子空间基础设置的最小开销,Cattan在适应过程中可以在源数据和目标数据之间进行无监督的对齐。通过对多个2D和3D Vision基准测试(Imagenet-C,Office-31,OfficeHome,Domainnet,PointDa-10)和模型体系结构进行广泛的实验评估,我们在FTTA性能方面表现出显着提高。此外,即使使用固有健壮的模型,预训练的VIT表示以及目标域中的样本可用性低,我们也会对对齐目标的实用性做出许多关键发现。
translated by 谷歌翻译
在现实生活中,机器学习模型经常面临培训和测试域之间存在数据分布的变化的情景。当目标是对不同于在培训中看到的分布的预测,我们会产生域泛化问题。解决此问题的方法使用来自多个源域的数据来学习模型,然后将此模型应用于未经调整的目标域。我们的假设是,当用多个域训练时,每个迷你批处理中的冲突梯度包含特定于与其他域的各个域特定的信息,包括测试域。如果保持不受影响,这种分歧可能会降低泛化性能。在这项工作中,我们在域移情中出现的突出梯度,并根据梯度手术制定新的渐变协议策略,以减轻其效果。我们在具有三个多域数据集中的图像分类任务中验证了我们的方法,显示了提高域移位情景中深入学习模型的泛化能力的拟议协议策略的价值。
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
为了在单一源领域的概括中取得成功,最大化合成域的多样性已成为最有效的策略之一。最近的许多成功都来自预先指定模型在培训期间暴露于多样性类型的方法,因此它最终可以很好地概括为新领域。但是,基于na \“基于多样性的增强也不能因为它们无法对大型域移动建模,或者因为预先指定的变换的跨度不能涵盖域概括中通常发生的转移类型。解决这个问题,我们提出了一个新颖的框架,该框架使用神经网络使用对抗学习的转换(ALT)来建模可欺骗分类器的合理但硬的图像转换。该网络是为每个批次的随机初始初始初始初始初始初始化的,并培训了固定数量的步骤。为了最大化分类错误。此外,我们在分类器对干净和转化的图像的预测之间实现一致性。通过广泛的经验分析,我们发现这种对抗性转换的新形式同时实现了多样性和硬度的目标,并超越了所有现有技术,以实现竞争性的所有技术单源域概括的基准。我们还显示了T HAT ALT可以自然地与现有的多样性模块合作,从而产生高度独特的源域,导致最先进的性能。
translated by 谷歌翻译
The goal of domain generalization algorithms is to predict well on distributions different from those seen during training. While a myriad of domain generalization algorithms exist, inconsistencies in experimental conditions-datasets, architectures, and model selection criteria-render fair and realistic comparisons difficult. In this paper, we are interested in understanding how useful domain generalization algorithms are in realistic settings. As a first step, we realize that model selection is non-trivial for domain generalization tasks. Contrary to prior work, we argue that domain generalization algorithms without a model selection strategy should be regarded as incomplete. Next, we implement DOMAINBED, a testbed for domain generalization including seven multi-domain datasets, nine baseline algorithms, and three model selection criteria. We conduct extensive experiments using DO-MAINBED and find that, when carefully implemented, empirical risk minimization shows state-of-the-art performance across all datasets. Looking forward, we hope that the release of DOMAINBED, along with contributions from fellow researchers, will streamline reproducible and rigorous research in domain generalization. * Alphabetical order, equal contribution.Preprint. Under review.
translated by 谷歌翻译
优化从看不见域的样本上的分类器的性能仍然是一个具有挑战性的问题。虽然大多数关于域泛化的研究侧重于学习域名特征表示,但已经提出了多专家框架作为可能的解决方案,并且已经表现出了有希望的性能。但是,当前的多专家学习框架在推理期间未能充分利用源域知识,从而导致次优性能。在这项工作中,我们建议适应变压器,以便动态解码域泛化的源域知识。具体来说,我们将一个特定于域的本地专家域每个源域和一个域 - 不可知要素分支为查询。变压器编码器将所有域特定功能编码为内存中的源域知识。在变压器解码器中,域名忽视查询与跨关注模块中的存储器交互,并且类似于输入的域将有助于注意输出。因此,源域知识得到动态解码,以推动来自未经看不见的域的电流输入。该机制使得提出的方法能够概括到看不见的域。所提出的方法已经在域泛化领域的三个基准中进行了评估,并与最先进的方法相比,具有最佳性能。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从标记的源域传输到未标记的目标域。传统上,基于子空间的方法为此问题形成了一类重要的解决方案。尽管他们的数学优雅和易腐烂性,但这些方法通常被发现在产生具有复杂的现实世界数据集的领域不变的功能时无效。由于近期具有深度网络的代表学习的最新进展,本文重新访问了UDA的子空间对齐,提出了一种新的适应算法,始终如一地导致改进的泛化。与现有的基于对抗培训的DA方法相比,我们的方法隔离了特征学习和分配对准步骤,并利用主要辅助优化策略来有效地平衡域不契约的目标和模型保真度。在提供目标数据和计算要求的显着降低的同时,基于子空间的DA竞争性,有时甚至优于几种标准UDA基准测试的最先进的方法。此外,子空间对准导致本质上定期的模型,即使在具有挑战性的部分DA设置中,也表现出强大的泛化。最后,我们的UDA框架的设计本身支持对测试时间的新目标域的逐步适应,而无需从头开始重新检测模型。总之,由强大的特征学习者和有效的优化策略提供支持,我们将基于子空间的DA建立为可视识别的高效方法。
translated by 谷歌翻译
当部署和培训之间存在分配变化时,深层神经网络的性能恶化严重。域的概括(DG)旨在通过仅依靠一组源域来安全地传输模型以看不见目标域。尽管已经提出了各种DG方法,但最近的一项名为Domainbed的研究表明,其中大多数没有超过简单的经验风险最小化(ERM)。为此,我们提出了一个通用框架,该框架与现有的DG算法是正交的,并且可以始终如一地提高其性能。与以前的DG作品不同的是,在静态源模型上有希望成为通用的DG,我们提出的ADAODM会在测试时间适应不同目标域的源模型。具体而言,我们在共享域形式的特征提取器上创建多个域特异性分类器。特征提取器和分类器以对抗性方式进行了训练,其中特征提取器将输入样品嵌入到域不变的空间中,并且多个分类器捕获了每个分类器与特定源域有关的独特决策边界。在测试过程中,可以通过利用源分类器之间的预测分歧来有效地衡量目标和源域之间的分布差异。通过微调源模型以最大程度地减少测试时间的分歧,目标域特征与不变特征空间很好地对齐。我们验证了两种流行的DG方法,即ERM和Coral,以及四个DG基准,即VLCS,PACS,OfficeHome和TerrainCognita。结果表明,ADAODM稳定地提高了对看不见的域的概括能力,并实现了最先进的性能。
translated by 谷歌翻译
学习域不变的表示已成为域适应/概括的最受欢迎的方法之一。在本文中,我们表明不变的表示可能不足以保证良好的概括,在考虑标签函数转移的情况下。受到这一点的启发,我们首先在经验风险上获得了新的概括上限,该概括风险明确考虑了标签函数移动。然后,我们提出了特定领域的风险最小化(DRM),该风险最小化(DRM)可以分别对不同域的分布移动进行建模,并为目标域选择最合适的域。对四个流行的域概括数据集(CMNIST,PACS,VLCS和域)进行了广泛的实验,证明了所提出的DRM对域泛化的有效性,具有以下优点:1)它的表现明显超过了竞争性盆地的表现; 2)与香草经验风险最小化(ERM)相比,所有训练领域都可以在所有训练领域中具有可比性或优越的精度; 3)在培训期间,它仍然非常简单和高效,4)与不变的学习方法是互补的。
translated by 谷歌翻译
现实世界中的数据通常显示出不平衡的标签分布。有关数据不平衡的现有研究集中在单域设置上,即样本来自相同的数据分布。但是,自然数据可以起源于不同的领域,在一个领域中的少数族裔可以从其他域中具有丰富的实例。我们正式化了多域长尾识别(MDLT)的任务,该任务从多域不平衡数据中学习,解决了跨域的标签不平衡,域移动和不同标签分布,并将其推广到所有域级对。我们首先开发了域类的可传递性图,并表明这种可传递性决定了MDLT中学习的成功。然后,我们提出了Boda,这是一种理论上的学习策略,可以跟踪可转移性统计的上限,并确保跨域级分布之间的平衡对齐和校准。我们策划了基于广泛使用的多域数据集的五个MDLT基准测试,并将BODA与跨越不同学习策略的二十个算法进行比较。广泛而严格的实验验证了BODA的出色性能。此外,作为副产品,Boda建立了有关域泛化基准测试的新的最新最先进,强调了解决跨域数据不平衡的重要性,这对于改善概括至看不见的域可能至关重要。代码和数据可在以下网址获得:https://github.com/yyzharry/multi-domain-mmbalance。
translated by 谷歌翻译
域泛化(DG)利用多个标记的源数据集来训练未经化的目标域的概括模型。然而,由于昂贵的注释成本,在现实世界应用中难以满足标记所有源数据的要求。在本文中,我们调查单个标记的域泛化(SLDG)任务,只标有一个源域,这比传统的域泛化(CDG)更实用和具有挑战性。 SLDG任务中的主要障碍是可怜的概括偏置:标记源数据集中的鉴别信息可以包含特定于域的偏差,限制训练模型的泛化。为了解决这个具有挑战性的任务,我们提出了一种称为域特定偏置滤波(DSBF)的新方法,该方法用标记的源数据初始化识别模型,然后通过用于泛化改进的未标记的源数据来滤除其域特定的偏差。我们将过滤过程划分为(1)特征提取器扩展通过K-Means的基于聚类的语义特征重新提取和(2)分类器通过注意引导语义特征投影校准。 DSBF统一探索标签和未标记的源数据,以增强培训模型的可辨性和泛化,从而产生高度普遍的模型。我们进一步提供了理论分析,以验证所提出的域特定的偏置滤波过程。关于多个数据集的广泛实验显示了DSBF在解决具有挑战性的SLDG任务和CDG任务时的优越性。
translated by 谷歌翻译
域泛化涉及从异构地收集培训来源的分类器,以便它推广到从类似的未知目标域中汲取的数据,具有大规模学习和个性化推断的应用。在许多设置中,隐私问题禁止获取培训数据样本的域标签,而是只有汇总培训点集合。利用域标签来创建域不变特征表示的现有方法在此设置中不可应用,需要替代方法来学习概括的分类器。在本文中,我们提出了一个解决这个问题的域 - 自适应方法,它分为两个步骤:(a)我们在仔细选择的特征空间内培训数据来创建伪域,(b)使用这些伪域学习域 - 自适应分类器,该分类器使用有关它所属的输入和伪域的信息进行预测。我们的方法在各种域泛化基准测试中实现了最先进的性能,而无需使用域标签。此外,我们使用群集信息提供关于域泛化的新颖理论保障。我们的方法可以适用于基于集合的方法,即使在大型基准数据集上也可以提供大量的收益。代码可以在:https://github.com/xavierohan/adaclust_domainbed
translated by 谷歌翻译
大多数机器学习算法的基本假设是培训和测试数据是从相同的底层分布中汲取的。然而,在几乎所有实际应用中违反了这种假设:由于不断变化的时间相关,非典型最终用户或其他因素,机器学习系统经常测试。在这项工作中,我们考虑域泛化的问题设置,其中训练数据被构造成域,并且可能有多个测试时间偏移,对应于新域或域分布。大多数事先方法旨在学习在所有域上执行良好的单一强大模型或不变的功能空间。相比之下,我们的目标是使用未标记的测试点学习适应域转移到域移的模型。我们的主要贡献是介绍自适应风险最小化(ARM)的框架,其中模型被直接优化,以便通过学习来转移以适应培训域来改编。与稳健性,不变性和适应性的先前方法相比,ARM方法提供了在表现域移位的多个图像分类问题上的性能增益为1-4%的测试精度。
translated by 谷歌翻译
分销转移(DS)是一个常见的问题,可恶化学习机器的性能。为了克服这个问题,我们假设现实世界的分布是由基本分布组成的,这些分布在不同域之间保持不变。我们将其称为不变的基本分布(即)假设。因此,这种不变性使知识转移到看不见的域。为了利用该假设在域概括(DG)中,我们开发了一个由门域单位(GDU)组成的模块化神经网络层。每个GDU都学会了单个基本领域的嵌入,使我们能够在训练过程中编码域相似性。在推断期间,GDU在观察和每个相应的基本分布之间进行了计算相似性,然后将其用于形成学习机的加权集合。由于我们的层是经过反向传播的训练,因此可以轻松地集成到现有的深度学习框架中。我们对Digits5,ECG,CamelyOn17,IwildCam和FMOW的评估显示出对训练的目标域的性能有显着改善,而无需从目标域访问数据。这一发现支持了即现实世界数据分布中的假设。
translated by 谷歌翻译
我们关注模型概括中最坏的情况,因为一个模型旨在在许多看不见的域上表现良好,而只有一个单个域可供训练。我们提出基于元学习的对抗领域的增强,以解决此范围泛化问题。关键思想是利用对抗性训练来创建“虚构的”但“具有挑战性”的人群,模型可以从中学会通过理论保证进行概括。为了促进快速和理想的域增强,我们将模型训练施加在元学习方案中,并使用Wasserstein自动编码器放宽广泛使用的最坏情况的约束。我们通过整合有效域概括的不确定性定量来进一步改善我们的方法。在多个基准数据集上进行的广泛实验表明其在解决单个领域概括方面的出色性能。
translated by 谷歌翻译
最近证明,接受SGD训练的神经网络优先依赖线性预测的特征,并且可以忽略复杂的,同样可预测的功能。这种简单性偏见可以解释他们缺乏分布(OOD)的鲁棒性。学习任务越复杂,统计工件(即选择偏见,虚假相关性)的可能性就越大比学习的机制更简单。我们证明可以减轻简单性偏差并改善了OOD的概括。我们使用对其输入梯度对齐的惩罚来训练一组类似的模型以不同的方式拟合数据。我们从理论和经验上展示了这会导致学习更复杂的预测模式的学习。 OOD的概括从根本上需要超出I.I.D.示例,例如多个培训环境,反事实示例或其他侧面信息。我们的方法表明,我们可以将此要求推迟到独立的模型选择阶段。我们获得了SOTA的结果,可以在视觉域偏置数据和概括方面进行视觉识别。该方法 - 第一个逃避简单性偏见的方法 - 突出了需要更好地理解和控制深度学习中的归纳偏见。
translated by 谷歌翻译
We are concerned with a worst-case scenario in model generalization, in the sense that a model aims to perform well on many unseen domains while there is only one single domain available for training. We propose a new method named adversarial domain augmentation to solve this Outof-Distribution (OOD) generalization problem. The key idea is to leverage adversarial training to create "fictitious" yet "challenging" populations, from which a model can learn to generalize with theoretical guarantees. To facilitate fast and desirable domain augmentation, we cast the model training in a meta-learning scheme and use a Wasserstein Auto-Encoder (WAE) to relax the widely used worst-case constraint. Detailed theoretical analysis is provided to testify our formulation, while extensive experiments on multiple benchmark datasets indicate its superior performance in tackling single domain generalization.
translated by 谷歌翻译
域泛化(DG)被认为是泛广泛化的前面。我们提出了经验证据表明,DG泛化的主要原因是训练时存在多个域。此外,我们表明IID中的泛化方法对DG的泛化同样重要。量身定制的方法未能在传统的DG(TDG)评估中增加性能增益。我们的实验提示如果TDG已经在评估ood泛化方面存在的有用性?为了进一步加强我们的调查,我们提出了一种新颖的评估策略,Classwise DG(CWDG),在这里,每个班级,我们随机选择一个域并将其保留在一边进行测试。我们认为,这项基准测试更接近人类学习,并在现实世界方案中相关。反直观地,尽管在培训期间暴露于所有域,但CWDG比TDG评估更具挑战性。在解释观察的同时,我们的作品在探索新想法之前,我们的作品在DG问题上进行了更重要的分析。
translated by 谷歌翻译