机器学习模型的基本挑战是由于杂散的相关性部分地推广到分销(OOD)数据。为了解决这一挑战,我们首先将“ood泛化问题”正式形式化为受限制的优化,称为解剖学限制域泛化(DDG)。我们以有限维参数化和经验逼近的方式将该非普通约束优化放宽到贸易形式。然后,提供了对上述变换偏离原始问题的程度的理论分析。基于转型,我们提出了一种用于联合表示解剖和域泛化的原始双向算法。与基于领域对抗性培训和域标签的传统方法形成鲜明对比,DDG共同学习解剖学的语义和变化编码器,使灵活的操纵和增强训练数据。 DDG旨在学习语义概念的内在表示,这些概念不变于滋扰因素,并遍布不同的域。对流行基准的综合实验表明,DDG可以实现竞争性的ood性能,并在数据中揭示可解释的突出结构。
translated by 谷歌翻译
尽管在各种应用中取得了显着成功,但众所周知,在呈现出分发数据时,深度学习可能会失败。为了解决这一挑战,我们考虑域泛化问题,其中使用从相关训练域系列绘制的数据进行训练,然后在不同和看不见的测试域中评估预测器。我们表明,在数据生成的自然模型和伴随的不变性条件下,域泛化问​​题等同于无限维约束的统计学习问题;此问题构成了我们的方法的基础,我们呼叫基于模型的域泛化。由于解决深度学习中受约束优化问题的固有挑战,我们利用非凸显二元性理论,在二元间隙上紧张的界限发展这种统计问题的不受约束放松。基于这种理论动机,我们提出了一种具有收敛保证的新型域泛化算法。在我们的实验中,我们在几个基准中报告了最多30个百分点的阶段概括基座,包括彩色,Camelyon17-Wilds,FMOW-Wilds和PAC。
translated by 谷歌翻译
学习域不变的表示已成为域适应/概括的最受欢迎的方法之一。在本文中,我们表明不变的表示可能不足以保证良好的概括,在考虑标签函数转移的情况下。受到这一点的启发,我们首先在经验风险上获得了新的概括上限,该概括风险明确考虑了标签函数移动。然后,我们提出了特定领域的风险最小化(DRM),该风险最小化(DRM)可以分别对不同域的分布移动进行建模,并为目标域选择最合适的域。对四个流行的域概括数据集(CMNIST,PACS,VLCS和域)进行了广泛的实验,证明了所提出的DRM对域泛化的有效性,具有以下优点:1)它的表现明显超过了竞争性盆地的表现; 2)与香草经验风险最小化(ERM)相比,所有训练领域都可以在所有训练领域中具有可比性或优越的精度; 3)在培训期间,它仍然非常简单和高效,4)与不变的学习方法是互补的。
translated by 谷歌翻译
机器学习系统通常假设训练和测试分布是相同的。为此,关键要求是开发可以概括到未经看不见的分布的模型。领域泛化(DG),即分销概括,近年来引起了越来越令人利益。域概括处理了一个具有挑战性的设置,其中给出了一个或几个不同但相关域,并且目标是学习可以概括到看不见的测试域的模型。多年来,域概括地区已经取得了巨大进展。本文提出了对该地区最近进步的首次审查。首先,我们提供了域泛化的正式定义,并讨论了几个相关领域。然后,我们彻底审查了与域泛化相关的理论,并仔细分析了泛化背后的理论。我们将最近的算法分为三个类:数据操作,表示学习和学习策略,并为每个类别详细介绍几种流行的算法。第三,我们介绍常用的数据集,应用程序和我们的开放源代码库进行公平评估。最后,我们总结了现有文学,并为未来提供了一些潜在的研究主题。
translated by 谷歌翻译
更广泛的人重新识别(Reid)在最近的计算机视觉社区中引起了不断的关注。在这项工作中,我们在身份标签,特定特定因素(衣服/鞋子颜色等)和域特定因素(背景,观点等)之间构建结构因果模型。根据因果分析,我们提出了一种新颖的域不变表示,以获得概括的人重新识别(DIR-REID)框架。具体而言,我们首先建议解散特定于特定的和域特定的特征空间,我们提出了一种有效的算法实现,用于后台调整,基本上是朝向SCM的因果干预。已经进行了广泛的实验,表明Dir-Reid在大规模域泛化Reid基准上表现出最先进的方法。
translated by 谷歌翻译
分发概括是将模型从实验室转移到现实世界时的关键挑战之一。现有努力主要侧重于源和目标域之间建立不变的功能。基于不变的功能,源域上的高性能分类可以在目标域上同样良好。换句话说,不变的功能是\ emph {transcorable}。然而,在实践中,没有完全可转换的功能,并且一些算法似乎学习比其他算法更学习“更可转移”的特征。我们如何理解和量化此类\ EMPH {可转录性}?在本文中,我们正式定义了一种可以量化和计算域泛化的可转换性。我们指出了与域之间的常见差异措施的差异和连接,例如总变化和Wassersein距离。然后,我们证明我们可以使用足够的样本估计我们的可转换性,并根据我们的可转移提供目标误差的新上限。经验上,我们评估现有算法学习的特征嵌入的可转换性,以获得域泛化。令人惊讶的是,我们发现许多算法并不完全学习可转让的功能,尽管很少有人仍然可以生存。鉴于此,我们提出了一种用于学习可转移功能的新算法,并在各种基准数据集中测试,包括RotationMnist,PACS,Office和Wilds-FMOW。实验结果表明,该算法在许多最先进的算法上实现了一致的改进,证实了我们的理论发现。
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
传统的监督学习方法,尤其是深的学习方法,发现对分发超出(OOD)示例敏感,主要是因为所学习的表示与由于其域特异性相关性的变异因子混合了语义因素,而只有语义因子导致输出。为了解决这个问题,我们提出了一种基于因果推理的因果语义生成模型(CSG),以便分别建模两个因素,以及从单个训练域中的oo ood预测的制定方法,这是常见和挑战的。该方法基于因果不变原理,在变形贝斯中具有新颖的设计,用于高效学习和易于预测。从理论上讲,我们证明,在某些条件下,CSG可以通过拟合训练数据来识别语义因素,并且这种语义识别保证了泛化概率的界限和适应的成功。实证研究表明,改善了卓越的基线表现。
translated by 谷歌翻译
卷积神经网络已广泛应用于医学图像分割,并取得了相当大的性能。但是,性能可能会受到训练数据(源域)和测试数据(目标域)之间域间隙的显着影响。为了解决此问题,我们提出了一种基于数据操作的域泛化方法,称为域概括(AADG)的自动增强。我们的AADG框架可以有效地采样数据增强策略,从而产生新的领域并从适当的搜索空间中多样化训练集。具体而言,我们介绍了一项新的代理任务,以最大程度地提高了多个增强新颖的域之间的多样性,该域通过单位球体空间中的凹痕距离来衡量,从而使自动化的增强可牵引。对抗性训练和深入的强化学习有效地搜索了目标。全面执行了11个公开底部的底面图像数据集的定量和定性实验(四个用于视网膜血管分割,四个用于视盘和杯子和杯(OD/OC)分割(OD/OC)分割,视网膜病变细分进行了三个)。两个用于视网膜脉管系统分割的八八个数据集进一步涉及验证跨模式泛化。我们提出的AADG通过视网膜船,OD/OC和病变细分任务的相当大的利润来表现出最新的概括性能,并优于现有方法。学到的政策在经验上得到了证实为模型不平衡,并且可以很好地转移到其他模型中。源代码可在https://github.com/crazorback/aadg上找到。
translated by 谷歌翻译
Distributional shift is one of the major obstacles when transferring machine learning prediction systems from the lab to the real world. To tackle this problem, we assume that variation across training domains is representative of the variation we might encounter at test time, but also that shifts at test time may be more extreme in magnitude. In particular, we show that reducing differences in risk across training domains can reduce a model's sensitivity to a wide range of extreme distributional shifts, including the challenging setting where the input contains both causal and anticausal elements. We motivate this approach, Risk Extrapolation (REx), as a form of robust optimization over a perturbation set of extrapolated domains (MM-REx), and propose a penalty on the variance of training risks (V-REx) as a simpler variant. We prove that variants of REx can recover the causal mechanisms of the targets, while also providing some robustness to changes in the input distribution ("covariate shift"). By tradingoff robustness to causally induced distributional shifts and covariate shift, REx is able to outperform alternative methods such as Invariant Risk Minimization in situations where these types of shift co-occur.
translated by 谷歌翻译
尽管学习已成为现代信息处理的核心组成部分,但现在有足够的证据表明它可以导致偏见,不安全和有偏见的系统。因此,对学习要求施加要求至关重要,尤其是在达到社会,工业和医疗领域的关键应用程序时。但是,大多数现代统计问题的非跨性别性只有通过限制引入而加剧。尽管通常可以使用经验风险最小化来学习良好的无约束解决方案,即使获得满足统计约束的模型也可能具有挑战性。更重要的是,一个好。在本文中,我们通过在经验双重领域中学习来克服这个问题,在经验的双重领域中,统计学上的统计学习问题变得不受限制和确定性。我们通过界定经验二元性差距来分析这种方法的概括特性 - 即,我们的近似,可拖动解决方案与原始(非凸)统计问题的解决方案之间的差异 - 并提供实用的约束学习算法。这些结果建立了与经典学习理论的约束,从而可以明确地在学习中使用约束。我们说明了这种理论和算法受到速率受限的学习应用,这是在公平和对抗性鲁棒性中产生的。
translated by 谷歌翻译
机器学习系统经常在培训和测试之间遇到分发转变。在本文中,我们介绍了一个简单的变分目标,其OptiCa正好成为所有表现形式的集合,在那种情况下,保证风险最小化者对保留贝叶斯预测因子的任何分配换档,例如协变量。我们的目标有两个组成部分。首先,表示必须保持对任务的判别,即,一些预测指标必须能够同时最小化来源和目标风险。其次,代表性的边际支持需要跨源头和目标相同。我们通过设计自我监督的学习方法来实现这一实用,只使用未标记的数据和增强来培训强大的陈述。我们的目标在域底实现最先进的结果,并对最近的方法(如剪辑)的稳健性提供洞察力。
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
We propose a Target Conditioned Representation Independence (TCRI) objective for domain generalization. TCRI addresses the limitations of existing domain generalization methods due to incomplete constraints. Specifically, TCRI implements regularizers motivated by conditional independence constraints that are sufficient to strictly learn complete sets of invariant mechanisms, which we show are necessary and sufficient for domain generalization. Empirically, we show that TCRI is effective on both synthetic and real-world data. TCRI is competitive with baselines in average accuracy while outperforming them in worst-domain accuracy, indicating desired cross-domain stability.
translated by 谷歌翻译
Graph machine learning has been extensively studied in both academia and industry. Although booming with a vast number of emerging methods and techniques, most of the literature is built on the in-distribution hypothesis, i.e., testing and training graph data are identically distributed. However, this in-distribution hypothesis can hardly be satisfied in many real-world graph scenarios where the model performance substantially degrades when there exist distribution shifts between testing and training graph data. To solve this critical problem, out-of-distribution (OOD) generalization on graphs, which goes beyond the in-distribution hypothesis, has made great progress and attracted ever-increasing attention from the research community. In this paper, we comprehensively survey OOD generalization on graphs and present a detailed review of recent advances in this area. First, we provide a formal problem definition of OOD generalization on graphs. Second, we categorize existing methods into three classes from conceptually different perspectives, i.e., data, model, and learning strategy, based on their positions in the graph machine learning pipeline, followed by detailed discussions for each category. We also review the theories related to OOD generalization on graphs and introduce the commonly used graph datasets for thorough evaluations. Finally, we share our insights on future research directions. This paper is the first systematic and comprehensive review of OOD generalization on graphs, to the best of our knowledge.
translated by 谷歌翻译
培训和测试数据之间的分布变化通常会破坏深度学习模型的性能。近年来,许多工作都注意存在分布转移的领域泛化(DG),而目标数据看不见。尽管算法设计取得了进展,但长期以来一直忽略了两个基础因素:1)基于正则化的目标(例如,分布对齐)的优化和2)DG的模型选择,因为无法利用有关目标域的知识。在本文中,我们提出了用于域概括的优化和选择技术的混合。为了进行优化,我们利用改编的混音来生成一个分发数据集,该数据集可以指导首选项方向并通过帕累托优化进行优化。对于模型选择,我们生成一个验证数据集,距离目标分布距离更遥远,从而可以更好地表示目标数据。我们还提出了一些理论见解。对一个视觉分类基准和三个时间序列基准的全面实验表明,我们的模型优化和选择技术可以在很大程度上可以改善现有域概括算法的性能,甚至可以取得新的最先进的结果。
translated by 谷歌翻译
机器学习算法通常假设培训和测试示例是从相同的分布中汲取的。然而,分发转移是现实世界应用中的常见问题,并且可以在测试时间造成模型急剧执行。在本文中,我们特别考虑域移位和亚泊素班次的问题(例如,不平衡数据)。虽然先前的作品通常会寻求明确地将模型的内部表示和预测器进行明确,以成为域不变的,但我们旨在规范整个功能而不限制模型的内部表示。这导致了一种简单的基于混合技术,它通过名为LISA的选择性增强来学习不变函数。 Lisa选择性地用相同的标签而单独地插值样本,但不同的域或具有相同的域但不同的标签。我们分析了线性设置,从理论上展示了LISA如何导致较小的最差组错误。凭经验,我们研究了LISA对从亚本化转变到域移位的九个基准的有效性,我们发现LISA一直以其他最先进的方法表达。
translated by 谷歌翻译
监督学习的关键假设是培训和测试数据遵循相同的概率分布。然而,这种基本假设在实践中并不总是满足,例如,由于不断变化的环境,样本选择偏差,隐私问题或高标签成本。转移学习(TL)放松这种假设,并允许我们在分销班次下学习。通常依赖于重要性加权的经典TL方法 - 基于根据重要性(即测试过度训练密度比率)的训练损失培训预测器。然而,由于现实世界机器学习任务变得越来越复杂,高维和动态,探讨了新的新方法,以应对这些挑战最近。在本文中,在介绍基于重要性加权的TL基础之后,我们根据关节和动态重要预测估计审查最近的进步。此外,我们介绍一种因果机制转移方法,该方法包含T1中的因果结构。最后,我们讨论了TL研究的未来观点。
translated by 谷歌翻译
联合学习(FL)是一个杰出的框架,可以通过融合本地,分散的模型来确保用户隐私来培训集中式模型。在这种情况下,一个主要障碍是数据异质性,即每个客户具有非相同和独立分布(非IID)数据。这类似于域概括(DG)的上下文,在该上下文中,每个客户端都可以视为不同的域。但是,尽管DG中的许多方法从算法的角度来解决数据异质性,但最近的证据表明,数据增强可以诱导相等或更高的性能。在这种连接的激励下,我们介绍了受欢迎的DG算法的联合版本,并表明,通过应用适当的数据增强,我们可以在联合环境中减轻数据异质性,并为看不见的客户获得更高的准确性。配备了数据增强功能,我们甚至可以使用最基本的联邦平均算法实现最先进的性能,并具有更稀疏的沟通。
translated by 谷歌翻译
我们关注模型概括中最坏的情况,因为一个模型旨在在许多看不见的域上表现良好,而只有一个单个域可供训练。我们提出基于元学习的对抗领域的增强,以解决此范围泛化问题。关键思想是利用对抗性训练来创建“虚构的”但“具有挑战性”的人群,模型可以从中学会通过理论保证进行概括。为了促进快速和理想的域增强,我们将模型训练施加在元学习方案中,并使用Wasserstein自动编码器放宽广泛使用的最坏情况的约束。我们通过整合有效域概括的不确定性定量来进一步改善我们的方法。在多个基准数据集上进行的广泛实验表明其在解决单个领域概括方面的出色性能。
translated by 谷歌翻译