The ongoing transition from a linear (produce-use-dispose) to a circular economy poses significant challenges to current state-of-the-art information and communication technologies. In particular, the derivation of integrated, high-level views on material, process, and product streams from (real-time) data produced along value chains is challenging for several reasons. Most importantly, sufficiently rich data is often available yet not shared across company borders because of privacy concerns which make it impossible to build integrated process models that capture the interrelations between input materials, process parameters, and key performance indicators along value chains. In the current contribution, we propose a privacy-preserving, federated multivariate statistical process control (FedMSPC) framework based on Federated Principal Component Analysis (PCA) and Secure Multiparty Computation to foster the incentive for closer collaboration of stakeholders along value chains. We tested our approach on two industrial benchmark data sets - SECOM and ST-AWFD. Our empirical results demonstrate the superior fault detection capability of the proposed approach compared to standard, single-party (multiway) PCA. Furthermore, we showcase the possibility of our framework to provide privacy-preserving fault diagnosis to each data holder in the value chain to underpin the benefits of secure data sharing and federated process modeling.
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
Federated learning facilitates the collaborative training of models without the sharing of raw data. However, recent attacks demonstrate that simply maintaining data locality during training processes does not provide sufficient privacy guarantees. Rather, we need a federated learning system capable of preventing inference over both the messages exchanged during training and the final trained model while ensuring the resulting model also has acceptable predictive accuracy. Existing federated learning approaches either use secure multiparty computation (SMC) which is vulnerable to inference or differential privacy which can lead to low accuracy given a large number of parties with relatively small amounts of data each. In this paper, we present an alternative approach that utilizes both differential privacy and SMC to balance these trade-offs. Combining differential privacy with secure multiparty computation enables us to reduce the growth of noise injection as the number of parties increases without sacrificing privacy while maintaining a pre-defined rate of trust. Our system is therefore a scalable approach that protects against inference threats and produces models with high accuracy. Additionally, our system can be used to train a variety of machine learning models, which we validate with experimental results on 3 different machine learning algorithms. Our experiments demonstrate that our approach out-performs state of the art solutions. CCS CONCEPTS• Security and privacy → Privacy-preserving protocols; Trust frameworks; • Computing methodologies → Learning settings.
translated by 谷歌翻译
Today's AI still faces two major challenges. One is that in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated learning framework, which includes horizontal federated learning, vertical federated learning and federated transfer learning. We provide definitions, architectures and applications for the federated learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allow knowledge to be shared without compromising user privacy.
translated by 谷歌翻译
Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in a case study that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of 7 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets.
translated by 谷歌翻译
内核主成分分析(KPCA)是一种公认​​的非线性维度减少方法,已广泛用于非线性故障检测任务。作为基于内核的基于核心的方法,KPCA继承了两个主要问题。首先,通常盲目地选择内核函数的形式和参数,根据试验和误差来盲目地选择。因此,在不适当的选择情况下可能存在严重的性能下降。其次,在在线监测阶段,KPCA具有多大的计算负担和实时性能差,因为内核方法需要利用所有离线训练数据。在这项工作中,为了处理两个缺点,提出了一种可学习的传统KPCA的更快实现。核心思想是使用新颖的非线性DAE-FE(基于深度AutoEncoder的特征提取)框架来参数化所有可行的内核函数,并详细提出DAE-PCA(基于深度AutoEncoder的主成分分析)方法。证明所提出的DAE-PCA方法等同于KPCA,但在根据输入的自动搜索最合适的非线性高维空间方面具有更多优势。此外,与传统KPCA相比,在线计算效率提高了大约100次。与田纳西州伊斯特曼(TE)的过程基准,说明了所提出的方法的有效性和优越性。
translated by 谷歌翻译
联邦学习(FL)是一个有前途的机器学习范式,可以以隐私保留和法律规范的方式实现现实世界AI应用的交联数据合作。如何估值缔约方的数据是一个关键而挑战的流逝。在文献中,数据估值要么依赖于给定任务运行特定模型,或者只是任务无关;但是,在尚未确定的FL模型时,常常为派对选择的必要条件。因此,这项工作填补了差距并提出了\ {FedValue},以我们的最佳知识,第一个隐私保留,任务特定的任务,但无模型的无模式数据估值方法,用于垂直流动任务。具体而言,FedValue包含一种新的信息 - 理论度量,称为福普利-CMI,以评估来自游戏理论观点的多方的数据值。此外,一种新颖的服务器辅助联合计算机制被设计为计算Shapley-CMI,并且同时保护每个方免受数据泄漏。我们还提出了几种技术来加速福利-CMI计算在实践中。六个开放数据集的广泛实验验证了FedValue对垂直流动任务数据估值的效力和效率。特别是,福芙-CMI作为无模型度量,与依赖于运行良好的良好模型的集合的措施相当执行。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
批处理过程显示了几种可变性来源,从原材料的特性到制造过程中不同事件期间变化的初始和不断发展的条件。在本章中,我们将用一个工业示例说明如何使用机器学习来减少这种明显的数据,同时维护过程工程师的相关信息。将提出两个常见的用例:1)自动分析以快速找到批处理过程中的相关性,以及2)轨迹分析以监视和识别异常批次,从而导致过程控制改进。
translated by 谷歌翻译
现代工业系统中成像和配置传感器的广泛可访问性创造了大量的高维传感变量。这导致对高维过程监测的研究日益兴趣。然而,文献中的大多数方法都假设控制内人群以给定基础(即样条,小波,核等)或未知基础(即主成分分析及其变体)的线性歧管(即样条,小波,内核等)。 ,不能用来有效地用非线性流形对概况进行建模,这在许多现实生活中很常见。我们将深层概率自动编码器作为一种可行的无监督学习方法来建模这种歧管。为此,我们从经典方法中制定了监测统计数据的非线性和概率扩展,作为预期重建误差(ERE)和基于KL-Divergence(KLD)的监视统计量。通过广泛的仿真研究,我们提供了有关为什么基于潜在空间的统计数据不可靠的见解,以及为什么基于残留空间的统计数据通常在基于深度学习的方法方面表现更好。最后,我们通过模拟研究和现实生活中的案例研究展示了深层概率模型的优势,涉及热钢滚动过程中缺陷的图像。
translated by 谷歌翻译
Federated Learning (FL) has emerged as a promising distributed learning paradigm with an added advantage of data privacy. With the growing interest in having collaboration among data owners, FL has gained significant attention of organizations. The idea of FL is to enable collaborating participants train machine learning (ML) models on decentralized data without breaching privacy. In simpler words, federated learning is the approach of ``bringing the model to the data, instead of bringing the data to the mode''. Federated learning, when applied to data which is partitioned vertically across participants, is able to build a complete ML model by combining local models trained only using the data with distinct features at the local sites. This architecture of FL is referred to as vertical federated learning (VFL), which differs from the conventional FL on horizontally partitioned data. As VFL is different from conventional FL, it comes with its own issues and challenges. In this paper, we present a structured literature review discussing the state-of-the-art approaches in VFL. Additionally, the literature review highlights the existing solutions to challenges in VFL and provides potential research directions in this domain.
translated by 谷歌翻译
技术快速发展。低成本和即可连接的设备旨在提供新的服务和应用。智能电网或智能医疗保健系统是这些应用的一些示例,所有这些应用程序都在智能城市的背景下。在该总连接方案中,出现了一些安全问题,因为连接设备的数量越大,表面攻击尺寸越大。通过这种方式,需要用于监视和检测安全事件的新解决方案来解决这种情况所带来的新挑战,其中包括监控的大量设备,管理大量数据以及提供的实时要求快速安全事件检测,从而快速响应攻击。在这项工作中,开发并介绍了在这些环境中监视和检测安全事件的实用和即用的工具。该工具基于多元统计网络监测(MSNM)方法,用于监测和异常检测,并将其称为MSNM-Sensor。虽然它是早期的发展阶段,但基于检测分层网络系统中众所周知的攻击的实验结果证明了该工具的适用性,以获得更复杂的情景,例如在智能城市或物联网生态系统中发现的那些。
translated by 谷歌翻译
联合学习(FL)是一个系统,中央聚合器协调多个客户解决机器学习问题的努力。此设置允许分散培训数据以保护隐私。本文的目的是提供针对医疗保健的FL系统的概述。 FL在此根据其框架,架构和应用程序进行评估。这里显示的是,FL通过中央聚合器服务器通过共享的全球深度学习(DL)模型解决了前面的问题。本文研究了最新的发展,并提供了来自FL研究的快速增长的启发,列出了未解决的问题。在FL的背景下,描述了几种隐私方法,包括安全的多方计算,同态加密,差异隐私和随机梯度下降。此外,还提供了对各种FL类的综述,例如水平和垂直FL以及联合转移学习。 FL在无线通信,服务建议,智能医学诊断系统和医疗保健方面有应用,本文将在本文中进行讨论。我们还对现有的FL挑战进行了彻底的审查,例如隐私保护,沟通成本,系统异质性和不可靠的模型上传,然后是未来的研究指示。
translated by 谷歌翻译
网络威胁情报(CTI)共享是减少攻击者和捍卫者之间信息不对称的重要活动。但是,由于数据共享和机密性之间的紧张关系,这项活动带来了挑战,这导致信息保留通常会导致自由骑士问题。因此,共享的信息仅代表冰山一角。当前的文献假设访问包含所有信息的集中数据库,但是由于上述张力,这并不总是可行的。这会导致不平衡或不完整的数据集,需要使用技术扩展它们。我们展示了这些技术如何导致结果和误导性能期望。我们提出了一个新颖的框架,用于从分布式数据中提取有关事件,漏洞和妥协指标的分布式数据,并与恶意软件信息共享平台(MISP)一起证明其在几种实际情况下的使用。提出和讨论了CTI共享的政策影响。拟议的系统依赖于隐私增强技术和联合处理的有效组合。这使组织能够控制其CTI,并最大程度地减少暴露或泄漏的风险,同时为共享的好处,更准确和代表性的结果以及更有效的预测性和预防性防御能力。
translated by 谷歌翻译
联合学习是一种数据解散隐私化技术,用于以安全的方式执行机器或深度学习。在本文中,我们介绍了有关联合学习的理论方面客户次数有所不同的用例。具体而言,使用从开放数据存储库中获得的胸部X射线图像提出了医学图像分析的用例。除了与隐私相关的优势外,还将研究预测的改进(就曲线下的准确性和面积而言)和减少执行时间(集中式方法)。将从培训数据中模拟不同的客户,以不平衡的方式选择,即,他们并非都有相同数量的数据。考虑三个或十个客户之间的结果与集中案件相比。间歇性客户将分析两种遵循方法,就像在实际情况下,某些客户可能会离开培训,一些新的新方法可能会进入培训。根据准确性,曲线下的区域和执行时间的结果,结果的结果的演变显示为原始数据被划分的客户次数。最后,提出了该领域的改进和未来工作。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
To apply federated learning to drug discovery we developed a novel platform in the context of European Innovative Medicines Initiative (IMI) project MELLODDY (grant n{\deg}831472), which was comprised of 10 pharmaceutical companies, academic research labs, large industrial companies and startups. The MELLODDY platform was the first industry-scale platform to enable the creation of a global federated model for drug discovery without sharing the confidential data sets of the individual partners. The federated model was trained on the platform by aggregating the gradients of all contributing partners in a cryptographic, secure way following each training iteration. The platform was deployed on an Amazon Web Services (AWS) multi-account architecture running Kubernetes clusters in private subnets. Organisationally, the roles of the different partners were codified as different rights and permissions on the platform and administrated in a decentralized way. The MELLODDY platform generated new scientific discoveries which are described in a companion paper.
translated by 谷歌翻译
动态系统的故障诊断是通过检测时间序列数据的变化(例如由系统降解和故障组件引起的残差)来完成的。通用多级分类方法用于故障诊断的使用使训练数据和未知的故障类别变得复杂。另一个复杂因素是,不同的故障类别可能导致相似的残余输出,尤其是对于小故障,这会导致分类歧义。在这项工作中,开发了用于使用Kullback-Leibler Divergence进行故障诊断应用程序的数据驱动分析和开放集分类的框架。提出了数据驱动的故障分类算法,该算法可以处理不平衡的数据集,类重叠和未知故障。此外,提出了一种算法来估计训练数据包含来自已知故障实现的信息时的故障大小。提出的框架的一个优点是,它也可以用于定量分析故障诊断性能,例如分析对不同幅度的故障进行分类的容易性。为了评估所提出方法的有用性,已经从内部燃烧引擎测试工作台收集了来自不同故障场景的多个数据集,以说明数据驱动诊断系统的设计过程,包括定量错误诊断分析和开发的开放式设置的评估故障分类算法。
translated by 谷歌翻译
In recent years, deep learning (DL) models have demonstrated remarkable achievements on non-trivial tasks such as speech recognition and natural language understanding. One of the significant contributors to its success is the proliferation of end devices that acted as a catalyst to provide data for data-hungry DL models. However, computing DL training and inference is the main challenge. Usually, central cloud servers are used for the computation, but it opens up other significant challenges, such as high latency, increased communication costs, and privacy concerns. To mitigate these drawbacks, considerable efforts have been made to push the processing of DL models to edge servers. Moreover, the confluence point of DL and edge has given rise to edge intelligence (EI). This survey paper focuses primarily on the fifth level of EI, called all in-edge level, where DL training and inference (deployment) are performed solely by edge servers. All in-edge is suitable when the end devices have low computing resources, e.g., Internet-of-Things, and other requirements such as latency and communication cost are important in mission-critical applications, e.g., health care. Firstly, this paper presents all in-edge computing architectures, including centralized, decentralized, and distributed. Secondly, this paper presents enabling technologies, such as model parallelism and split learning, which facilitate DL training and deployment at edge servers. Thirdly, model adaptation techniques based on model compression and conditional computation are described because the standard cloud-based DL deployment cannot be directly applied to all in-edge due to its limited computational resources. Fourthly, this paper discusses eleven key performance metrics to evaluate the performance of DL at all in-edge efficiently. Finally, several open research challenges in the area of all in-edge are presented.
translated by 谷歌翻译
对网络攻击的现代防御越来越依赖于主动的方法,例如,基于过去的事件来预测对手的下一个行动。建立准确的预测模型需要许多组织的知识; las,这需要披露敏感信息,例如网络结构,安全姿势和政策,这些信息通常是不受欢迎的或完全不可能的。在本文中,我们探讨了使用联合学习(FL)预测未来安全事件的可行性。为此,我们介绍了Cerberus,这是一个系统,可以为参与组织的复发神经网络(RNN)模型进行协作培训。直觉是,FL可能会在非私有方法之间提供中间地面,在非私有方法中,训练数据在中央服务器上合并,而仅训练本地模型的较低性替代方案。我们将Cerberus实例化在从一家大型安全公司的入侵预防产品中获得的数据集上,并评估其有关实用程序,鲁棒性和隐私性,以及参与者如何从系统中贡献和受益。总体而言,我们的工作阐明了将FL执行此任务的积极方面和挑战,并为部署联合方法以进行预测安全铺平了道路。
translated by 谷歌翻译