Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in a case study that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of 7 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets.
translated by 谷歌翻译
Mobile traffic prediction is of great importance on the path of enabling 5G mobile networks to perform smart and efficient infrastructure planning and management. However, available data are limited to base station logging information. Hence, training methods for generating high-quality predictions that can generalize to new observations on different parties are in demand. Traditional approaches require collecting measurements from different base stations and sending them to a central entity, followed by performing machine learning operations using the received data. The dissemination of local observations raises privacy, confidentiality, and performance concerns, hindering the applicability of machine learning techniques. Various distributed learning methods have been proposed to address this issue, but their application to traffic prediction has yet to be explored. In this work, we study the effectiveness of federated learning applied to raw base station aggregated LTE data for time-series forecasting. We evaluate one-step predictions using 5 different neural network architectures trained with a federated setting on non-iid data. The presented algorithms have been submitted to the Global Federated Traffic Prediction for 5G and Beyond Challenge. Our results show that the learning architectures adapted to the federated setting achieve equivalent prediction error to the centralized setting, pre-processing techniques on base stations lead to higher forecasting accuracy, while state-of-the-art aggregators do not outperform simple approaches.
translated by 谷歌翻译
联合学习(FL)最近被出现为一个有希望的方法,采用分布式学习模型结构来克服中央机器学习模型暂停的数据隐私和传输问题。在FL中,从不同设备或传感器收集的数据集用于培训当地模型(客户端),每个模型(客户端)都与集中式模型(服务器)共享其学习。然而,这种分布式学习方法呈现出独特的学习挑战,因为当地客户端的数据可以是非IID(独立和相同分布)和统计数据,这减少了中央模型中的学习准确性。在本文中,我们通过提出一种新颖的个性化条件FEDAVG(PC-FEDAVG)来克服这个问题,该文件旨在控制权重通信和聚合以定制的学习算法来个性化每个客户端的结果模型。我们对两个数据集的实验验证表明,与其他最先进的方法相比,我们的PC-FedAVG精确地构建了广义客户的模型,从而实现了更高的准确性。
translated by 谷歌翻译
电负载预测已成为电力系统操作的组成部分。深入学习模型为此目的被发现。然而,为了达到期望的预测准确性,它们需要大量的培训数据。分享负载预测的各个家庭的电力消耗数据可能会损害用户隐私,并且在通信资源方面可能是昂贵的。因此,诸如联邦学习的边缘计算方法正在为此目的获得更多重要性。这些方法可以利用数据,而无需集中存储它。本文评估了联合学习对单个房屋负荷的短期预测以及总负荷的表现。它通过将其与集中和局部学习方案进行比较来讨论该方法的优点和缺点。此外,提出了一种新的客户端聚类方法,以减少联合学习的收敛时间。结果表明,联合学习具有良好的性能,具有0.117kWh的最小根均匀误差(RMSE),为单独的负载预测。
translated by 谷歌翻译
联合学习是一种数据解散隐私化技术,用于以安全的方式执行机器或深度学习。在本文中,我们介绍了有关联合学习的理论方面客户次数有所不同的用例。具体而言,使用从开放数据存储库中获得的胸部X射线图像提出了医学图像分析的用例。除了与隐私相关的优势外,还将研究预测的改进(就曲线下的准确性和面积而言)和减少执行时间(集中式方法)。将从培训数据中模拟不同的客户,以不平衡的方式选择,即,他们并非都有相同数量的数据。考虑三个或十个客户之间的结果与集中案件相比。间歇性客户将分析两种遵循方法,就像在实际情况下,某些客户可能会离开培训,一些新的新方法可能会进入培训。根据准确性,曲线下的区域和执行时间的结果,结果的结果的演变显示为原始数据被划分的客户次数。最后,提出了该领域的改进和未来工作。
translated by 谷歌翻译
包含间歇性和可再生能源的含量增加了电力系统需求预测的重要性。由于它们提供的测量粒度,智能电表可以在需求预测中发挥关键作用。消费者的隐私问题,公用事业和供应商不愿与竞争对手或第三方共享数据,以及监管限制是一些限制智能米预测面。本文介绍了使用智能电表数据作为前一个约束的解决方案的短期需求预测的协作机器学习方法。隐私保存技术和联合学习使能够确保消费者对两者的机密性,它们的数据,使用它生成的模型(差异隐私),以及通信均值(安全聚合)。评估的方法考虑了几种方案,探讨了传统的集中方法如何在分散,协作和私人系统的方向上投射。在评估中获得的结果提供了几乎完美的隐私预算(1.39,$ 10E ^ {5} $)和(2.01,$ 10e ^ { - 5} $),具有可忽略不计的性能妥协。
translated by 谷歌翻译
在私营部门和行业中,每分钟都会创建大量数据。尽管在私人娱乐部门中掌握数据通常很容易,但在工业生产环境中,由于法律,知识产权保存和其他因素,因此更加困难。但是,大多数机器学习方法都需要数量和质量方面足够的数据源。将两个要求融合在一起的一种合适方法是在整个学习进度的情况下联合学习,但每个人仍然是他们数据的所有者。Federate学习首先是Google研究人员在2016年提出的,例如用于改进Google的键盘Gboard。与数十亿个Android用户相反,可比机械仅由少数公司使用。本文研究了哪些其他限制在生产中占上风以及可以考虑哪种联合学习方法。
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
最近,事物的人工智能(Aiot)一直在引起人们的关注,具有通过事物的网络连接提供高度智能服务的有趣愿景,从而导致了先进的AI驱动生态。但是,对数据隐私的最新监管限制排除将敏感的本地数据上传到数据中心,并以集中式方法利用它们。在这种情况下,直接应用联合学习算法几乎不能满足效率和准确性的工业要求。因此,我们在面部识别应用方面为AIOT提出了一个有效的工业联合学习框架。具体而言,我们建议利用转移学习的概念来加快设备上的联合培训,并进一步介绍私人投影仪的新颖设计,该设计有助于保护共享梯度,而不会产生额外的记忆消耗或计算成本。对亚洲私人面部数据集的实证研究表明,我们的方法仅在20轮沟通中就可以实现高认识的准确性,这表明了其在预测和培训方面的有效性。
translated by 谷歌翻译
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的越来越多的应用,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未对FL进行研究,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越受欢迎,因此需要对其中的FL进行研究。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用佛罗里达州客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的个性化模型。我们还提出了具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的新型数据分配方案,以将现有HAR数据集扩展到联合设置。我们在三个多设备HAR数据集上的实验结果表明,火焰的表现优于各种基准,F1得分高4.3-25.8%,能源效率提高1.02-2.86倍,并高达2.06倍的收敛速度,以通过FL的公平分布来获得目标准确性工作量。
translated by 谷歌翻译
负载预测是能源行业中执行的一项重要任务,以帮助平衡供应并保持电网的稳定负载。随着供应过渡向不太可靠的可再生能源产生,智能电表将证明是促进这些预测任务的重要组成部分。但是,在隐私意识的消费者中,智能电表的采用率很低,这些消费者害怕侵犯其细粒度的消费数据。在这项工作中,我们建议并探索一种基于联合学习的方法(FL)方法,以分布式协作方式培训预测模型,同时保留基础数据的隐私。我们比较了两种方法:FL和聚集的变体FL+HC与非私有的,集中的学习方法和完全私人的本地化学习方法。在这些方法中,我们使用RMSE和计算效率测量模型性能。此外,我们建议FL策略之后是个性化步骤,并表明可以通过这样做可以提高模型性能。我们表明,FL+HC紧随其后的是个性化可以实现$ \ sim $ 5 \%的模型性能提高,而与本地化学习相比,计算$ \ sim $ 10倍。最后,我们提供有关私人汇总预测的建议,以构建私人端到端负载预测应用程序。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
联合学习(FL)已成为协作分布式学习的隐私解决方案,客户直接在其设备上训练AI模型,而不是与集中式(潜在的对手)服务器共享数据。尽管FL在某种程度上保留了本地数据隐私,但已显示有关客户数据的信息仍然可以从模型更新中推断出来。近年来,已经制定了各种隐私计划来解决这种隐私泄漏。但是,它们通常以牺牲模型性能或系统效率为代价提供隐私,而在实施FL计划时,平衡这些权衡是一个至关重要的挑战。在本手稿中,我们提出了一个保护隐私的联合学习(PPFL)框架,该框架建立在控制理论中的矩阵加密和系统沉浸工具的协同作用上。这个想法是将学习算法(随机梯度体面(SGD))浸入更高维度的系统(所谓的目标系统)中,并设计目标系统的动力学,以便:浸入原始SGD的轨迹: /嵌入其轨迹中,并在加密数据上学习(在这里我们使用随机矩阵加密)。矩阵加密是在服务器上重新重新格式化的,作为将原始参数映射到更高维的参数空间的坐标的随机更改,并强制执行目标SGD收敛到原始SGD Optiral解决方案的加密版本。服务器使用浸入式地图的左侧逆汇总模型解密。我们表明,我们的算法提供与标准FL相同的准确性和收敛速度,而计算成本可忽略不计,同时却没有透露有关客户数据的信息。
translated by 谷歌翻译
个性化联合学习(FL)是佛罗里达州的一个新兴研究领域,在客户之间存在数据异质性的情况下,可以学习一个易于适应的全球模型。但是,个性化FL的主要挑战之一是,由于客户数据与服务器隔离以确保隐私,因此非常依赖客户的计算资源来计算高阶梯度。为了解决这个问题,我们专注于服务器可以独立于客户数据独立于客户数据的问题设置,这是各种应用程序中普遍的问题设置,但在现有文献中相对尚未探索。具体而言,我们提出了FedSim,这是一种针对个性化FL的新方法,该方法积极利用此类服务​​器数据来改善服务器中的元梯度计算以提高个性化性能。在实验上,我们通过各种基准和消融证明了FEDSIM在准确性方面优于现有方法,通过计算服务器中的完整元梯度,在计算上更有效,并且收敛速度高达34.2%。
translated by 谷歌翻译
Federated learning involves training statistical models over remote devices or siloed data centers, such as mobile phones or hospitals, while keeping data localized. Training in heterogeneous and potentially massive networks introduces novel challenges that require a fundamental departure from standard approaches for large-scale machine learning, distributed optimization, and privacy-preserving data analysis. In this article, we discuss the unique characteristics and challenges of federated learning, provide a broad overview of current approaches, and outline several directions of future work that are relevant to a wide range of research communities.
translated by 谷歌翻译
传统的深度学习方法(DL)需要在中央服务器上收集和处理的培训数据,这些中央服务器通常在保健等隐私敏感域中挑战。为此,提出了一种新的学习范式,称为联合学习(FL),在解决隐私和数据所有权问题的同时将DL的潜力带到了这些域。 FL使远程客户端能够在保持数据本地时学习共享ML模型。然而,传统的FL系统面临多种挑战,例如可扩展性,复杂的基础设施管理,并且由于空闲客户端而被浪费的计算和产生的成本。 FL系统的这些挑战与无服务器计算和功能 - AS-Service(FAAS)平台旨在解决的核心问题密切对齐。这些包括快速可扩展性,无基础设施管理,自动缩放为空闲客户端,以及每次使用付费计费模型。为此,我们为无服务器FL展示了一个新颖的系统和框架,称为不发烟。我们的系统支持多个商业和自主主机的FAAS提供商,可以在机构数据中心和边缘设备上部署在云端,内部部署。据我们所知,我们是第一个能够在一大面料的异构FAAS提供商中启用FL,同时提供安全性和差异隐私等重要功能。我们展示了全面的实验,即使用我们的系统可以成功地培训多达200个客户功能的不同任务,更容易实现。此外,我们通过将其与传统的FL系统进行比较来证明我们的方法的实际可行性,并表明它可以更便宜,更资源效率更便宜。
translated by 谷歌翻译
随着对数据隐私和所有权的越来越关注,近年来见证了机器学习(ML)的范式转移。新兴的范式,联合学习(FL)引起了人们的关注,并已成为机器学习实现的新设计。 FL可以在中央服务器的协调下启用数据筒仓的ML模型培训,从而消除了开销,而无需共享原始数据。在本文中,我们对FL范式进行了综述,尤其是比较类型,网络结构和全局模型聚合方法。然后,我们对能源域中的FL应用进行了全面审查(请参阅本文的智能电网)。我们提供FL的主题分类,以解决各种与能源有关的问题,包括需求响应,识别,预测和联合优化。我们详细描述了分类法,并以讨论各个方面的讨论,包括其能源信息学应用程序中的挑战,机会和局限性,例如能源系统建模和设计,隐私和进化。
translated by 谷歌翻译
这项工作调查了联合学习的可能性,了解IOT恶意软件检测,并研究该新学习范式固有的安全问题。在此上下文中,呈现了一种使用联合学习来检测影响物联网设备的恶意软件的框架。 n-baiot,一个数据集在由恶意软件影响的几个实际物联网设备的网络流量,已被用于评估所提出的框架。经过培训和评估监督和无监督和无监督的联邦模型(多层Perceptron和AutoEncoder)能够检测到MATEN和UNEEN的IOT设备的恶意软件,并进行了培训和评估。此外,它们的性能与两种传统方法进行了比较。第一个允许每个参与者在本地使用自己的数据局面训练模型,而第二个包括使参与者与负责培训全局模型的中央实体共享他们的数据。这种比较表明,在联合和集中方法中完成的使用更多样化和大数据,对模型性能具有相当大的积极影响。此外,联邦模型,同时保留了参与者的隐私,将类似的结果与集中式相似。作为额外的贡献,并衡量联邦方法的稳健性,已经考虑了具有若干恶意参与者中毒联邦模型的对抗性设置。即使使用单个对手,大多数联邦学习算法中使用的基线模型聚合平均步骤也很容易受到不同攻击的影响。因此,在相同的攻击方案下评估了作为对策的其他模型聚合函数的性能。这些职能对恶意参与者提供了重大改善,但仍然需要更多的努力来使联邦方法强劲。
translated by 谷歌翻译