随着对数据隐私和所有权的越来越关注,近年来见证了机器学习(ML)的范式转移。新兴的范式,联合学习(FL)引起了人们的关注,并已成为机器学习实现的新设计。 FL可以在中央服务器的协调下启用数据筒仓的ML模型培训,从而消除了开销,而无需共享原始数据。在本文中,我们对FL范式进行了综述,尤其是比较类型,网络结构和全局模型聚合方法。然后,我们对能源域中的FL应用进行了全面审查(请参阅本文的智能电网)。我们提供FL的主题分类,以解决各种与能源有关的问题,包括需求响应,识别,预测和联合优化。我们详细描述了分类法,并以讨论各个方面的讨论,包括其能源信息学应用程序中的挑战,机会和局限性,例如能源系统建模和设计,隐私和进化。
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
联邦学习一直是一个热门的研究主题,使不同组织的机器学习模型的协作培训在隐私限制下。随着研究人员试图支持更多具有不同隐私方法的机器学习模型,需要开发系统和基础设施,以便于开发各种联合学习算法。类似于Pytorch和Tensorflow等深度学习系统,可以增强深度学习的发展,联邦学习系统(FLSS)是等效的,并且面临各个方面的面临挑战,如有效性,效率和隐私。在本调查中,我们对联合学习系统进行了全面的审查。为实现流畅的流动和引导未来的研究,我们介绍了联合学习系统的定义并分析了系统组件。此外,我们根据六种不同方面提供联合学习系统的全面分类,包括数据分布,机器学习模型,隐私机制,通信架构,联合集市和联合的动机。分类可以帮助设计联合学习系统,如我们的案例研究所示。通过系统地总结现有联合学习系统,我们展示了设计因素,案例研究和未来的研究机会。
translated by 谷歌翻译
联合学习(FL)是一项新兴技术,可在保持数据分布和私密的同时向多个客户培训机器学习模型。根据参与的客户和模型培训量表,可以将联合学习分为两种类型:跨设备FL,客户通常是移动设备,客户编号可以达到数百万的规模;客户是组织或公司,并且客户编号通常很小(例如,一百之内)。尽管现有研究主要集中于跨设备FL,但本文旨在提供跨索洛FL的概述。更具体地说,我们首先讨论了交叉Silo FL的应用,并概述了其主要挑战。然后,我们通过关注与跨设备FL的联系和差异,对Cross-Silo FL挑战的现有方法进行系统的概述。最后,我们讨论了未来的方向和开放问题,值得社区的研究工作。
translated by 谷歌翻译
联合学习(FL)是一个系统,中央聚合器协调多个客户解决机器学习问题的努力。此设置允许分散培训数据以保护隐私。本文的目的是提供针对医疗保健的FL系统的概述。 FL在此根据其框架,架构和应用程序进行评估。这里显示的是,FL通过中央聚合器服务器通过共享的全球深度学习(DL)模型解决了前面的问题。本文研究了最新的发展,并提供了来自FL研究的快速增长的启发,列出了未解决的问题。在FL的背景下,描述了几种隐私方法,包括安全的多方计算,同态加密,差异隐私和随机梯度下降。此外,还提供了对各种FL类的综述,例如水平和垂直FL以及联合转移学习。 FL在无线通信,服务建议,智能医学诊断系统和医疗保健方面有应用,本文将在本文中进行讨论。我们还对现有的FL挑战进行了彻底的审查,例如隐私保护,沟通成本,系统异质性和不可靠的模型上传,然后是未来的研究指示。
translated by 谷歌翻译
The advent of Federated Learning (FL) has ignited a new paradigm for parallel and confidential decentralized Machine Learning (ML) with the potential of utilizing the computational power of a vast number of IoT, mobile and edge devices without data leaving the respective device, ensuring privacy by design. Yet, in order to scale this new paradigm beyond small groups of already entrusted entities towards mass adoption, the Federated Learning Framework (FLF) has to become (i) truly decentralized and (ii) participants have to be incentivized. This is the first systematic literature review analyzing holistic FLFs in the domain of both, decentralized and incentivized federated learning. 422 publications were retrieved, by querying 12 major scientific databases. Finally, 40 articles remained after a systematic review and filtering process for in-depth examination. Although having massive potential to direct the future of a more distributed and secure AI, none of the analyzed FLF is production-ready. The approaches vary heavily in terms of use-cases, system design, solved issues and thoroughness. We are the first to provide a systematic approach to classify and quantify differences between FLF, exposing limitations of current works and derive future directions for research in this novel domain.
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
数十亿无线设备将在不久的将来部署,利用更快的互联网速度和更多终点所带来的终点的可能性更快。随着IOT设备的盛开,将生成可能包含用户私人信息的大量数据。与隐私问题的高通信和储存成本,越来越挑战传统的集中式超云学习和处理IOT平台的生态系统。联邦学习(FL)已成为此问题最有前途的替代方法。在FL中,数据驱动的机器学习模型的培训是多个客户端之间的协作行为,而无需将数据带到中心点,因此减轻了通信和存储成本并提供了很大程度的用户级隐私。我们讨论了FL对于IOT平台的机会和挑战,以及如何启用未来的IOT应用程序。
translated by 谷歌翻译
联合学习(FL)是标准集中学习范式的最吸引人的替代方案之一,允许异质的设备集训练机器学习模型而无需共享其原始数据。但是,FL需要中央服务器来协调学习过程,从而引入潜在的可扩展性和安全性问题。在文献中,已经提出了诸如八卦联合学习(GFL)和支持区块链的联合学习(BFL)之类的无服务器的方法来减轻这些问题。在这项工作中,我们提出了这三种技术的完整概述,该技术根据整体性能指标进行比较,包括模型准确性,时间复杂性,交流开销,收敛时间和能源消耗。广泛的模拟活动允许进行定量分析。特别是,GFL能够节省18%的训练时间,68%的能源和51%的数据相对于CFL解决方案,但无法达到CFL的准确性水平。另一方面,BFL代表了一个可行的解决方案,用于以更高级别的安全性实施分散的学习,以额外的能源使用和数据共享为代价。最后,我们确定了两个分散的联合学习实施的开放问题,并就该新研究领域的潜在扩展和可能的研究方向提供见解。
translated by 谷歌翻译
由于机器学习(ML)模型变得越来越复杂,其中一个中央挑战是它们在规模的部署,使得公司和组织可以通过人工智能(AI)创造价值。 ML中的新兴范式是一种联合方法,其中学习模型部分地将其交付给一组异构剂,允许代理与自己的数据一起培训模型。然而,模型的估值问题,以及数据/模型的协作培训和交易的激励问题,在文献中获得了有限的待遇。本文提出了一种在基于信任区块基网络上交易的ML模型交易的新生态系统。买方可以获得ML市场的兴趣模型,兴趣的卖家将本地计算花在他们的数据上,以增强该模型的质量。在这样做时,考虑了本地数据与训练型型号的质量之间的比例关系,并且通过分布式数据福价(DSV)估计了销售课程中的训练中的数据的估值。同时,通过分布式分区技术(DLT)提供整个交易过程的可信度。对拟议方法的广泛实验评估显示出具有竞争力的运行时间绩效,在参与者的激励方面下降了15 \%。
translated by 谷歌翻译
通过参与大规模联合学习(FL)优化的设备的异构性质的激励,我们专注于由区块链(BC)技术赋予的异步服务器的FL解决方案。与主要采用的FL方法相比,假设同步操作,我们提倡一个异步方法,由此,模型聚合作为客户端提交本地更新。异步设置与具有异构客户端的实际大规模设置中的联合优化思路非常适合。因此,它可能导致通信开销和空闲时段的效率提高。为了评估启用了BC启用的FL的学习完成延迟,我们提供了基于批量服务队列理论的分析模型。此外,我们提供仿真结果以评估同步和异步机制的性能。涉及BC启用的流量的重要方面,例如网络大小,链路容量或用户要求,并分析并分析。随着我们的结果表明,同步设置导致比异步案例更高的预测精度。然而,异步联合优化在许多情况下提供了更低的延迟,从而在处理大数据集时成为一种吸引力的FL解决方案,严重的时序约束(例如,近实时应用)或高度不同的训练数据。
translated by 谷歌翻译
In recent years the applications of machine learning models have increased rapidly, due to the large amount of available data and technological progress.While some domains like web analysis can benefit from this with only minor restrictions, other fields like in medicine with patient data are strongerregulated. In particular \emph{data privacy} plays an important role as recently highlighted by the trustworthy AI initiative of the EU or general privacy regulations in legislation. Another major challenge is, that the required training \emph{data is} often \emph{distributed} in terms of features or samples and unavailable for classicalbatch learning approaches. In 2016 Google came up with a framework, called \emph{Federated Learning} to solve both of these problems. We provide a brief overview on existing Methods and Applications in the field of vertical and horizontal \emph{Federated Learning}, as well as \emph{Fderated Transfer Learning}.
translated by 谷歌翻译
更广泛的覆盖范围和更好的解决方案延迟减少5G需要其与多访问边缘计算(MEC)技术的组合。分散的深度学习(DDL),如联邦学习和群体学习作为对数百万智能边缘设备的隐私保留数据处理的有希望的解决方案,利用了本地客户端网络内的多层神经网络的分布式计算,而无需披露原始本地培训数据。值得注意的是,在金融和医疗保健等行业中,谨慎维护交易和个人医疗记录的敏感数据,DDL可以促进这些研究所的合作,以改善培训模型的性能,同时保护参与客户的数据隐私。在本调查论文中,我们展示了DDL的技术基础,通过分散的学习使社会许多人走。此外,我们通过概述DDL的挑战以及从新颖的沟通效率和可靠性的观点来概述目前本领域最先进的全面概述。
translated by 谷歌翻译
物联网的最新研究已被广泛应用于工业实践,促进了数据和连接设备的指数增长。此后,各方通过某些数据共享策略将访问数据驱动的AI模型。但是,当前大多数培训程序都依赖于集中式数据收集策略和单个计算服务器。但是,这样的集中计划可能会导致许多问题。存储在集中数据库中的客户数据可能会被篡改,因此数据的出处和真实性是不能合理的。一旦出现上述安全问题,训练有素的AI模型的可信度将是值得怀疑的,甚至在测试阶段也可能产生不利的结果。最近,已经探索了行业4.0和Web 3.0的两种核心技术区块链和AI,以促进分散的AI培训策略。为了实现这一目的,我们提出了一种称为Appflchain的新系统体系结构,即基于Hyperledger织物的区块链和联合学习范式的集成体系结构。我们提出的新系统允许不同的各方共同培训AI模型,其客户或利益相关者由基于联盟区块链的网络连接。由于用户不需要向服务器共享敏感的个人信息,因此我们的新系统可以保持高度的安全性和隐私性。为了进行数值评估,我们模拟了现实世界的场景,以说明Appflchain的整个操作过程。仿真结果表明,利用联盟区块链和联邦学习的特征,Appflchain可以证明有利的特性,包括不可耐受性,可追溯性,隐私保护和可靠的决策。
translated by 谷歌翻译
Today's AI still faces two major challenges. One is that in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated learning framework, which includes horizontal federated learning, vertical federated learning and federated transfer learning. We provide definitions, architectures and applications for the federated learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allow knowledge to be shared without compromising user privacy.
translated by 谷歌翻译
In terms of artificial intelligence, there are several security and privacy deficiencies in the traditional centralized training methods of machine learning models by a server. To address this limitation, federated learning (FL) has been proposed and is known for breaking down ``data silos" and protecting the privacy of users. However, FL has not yet gained popularity in the industry, mainly due to its security, privacy, and high cost of communication. For the purpose of advancing the research in this field, building a robust FL system, and realizing the wide application of FL, this paper sorts out the possible attacks and corresponding defenses of the current FL system systematically. Firstly, this paper briefly introduces the basic workflow of FL and related knowledge of attacks and defenses. It reviews a great deal of research about privacy theft and malicious attacks that have been studied in recent years. Most importantly, in view of the current three classification criteria, namely the three stages of machine learning, the three different roles in federated learning, and the CIA (Confidentiality, Integrity, and Availability) guidelines on privacy protection, we divide attack approaches into two categories according to the training stage and the prediction stage in machine learning. Furthermore, we also identify the CIA property violated for each attack method and potential attack role. Various defense mechanisms are then analyzed separately from the level of privacy and security. Finally, we summarize the possible challenges in the application of FL from the aspect of attacks and defenses and discuss the future development direction of FL systems. In this way, the designed FL system has the ability to resist different attacks and is more secure and stable.
translated by 谷歌翻译