Long-range time series forecasting is usually based on one of two existing forecasting strategies: Direct Forecasting and Iterative Forecasting, where the former provides low bias, high variance forecasts and the latter leads to low variance, high bias forecasts. In this paper, we propose a new forecasting strategy called Generative Forecasting (GenF), which generates synthetic data for the next few time steps and then makes long-range forecasts based on generated and observed data. We theoretically prove that GenF is able to better balance the forecasting variance and bias, leading to a much smaller forecasting error. We implement GenF via three components: (i) a novel conditional Wasserstein Generative Adversarial Network (GAN) based generator for synthetic time series data generation, called CWGAN-TS. (ii) a transformer based predictor, which makes long-range predictions using both generated and observed data. (iii) an information theoretic clustering algorithm to improve the training of both the CWGAN-TS and the transformer based predictor. The experimental results on five public datasets demonstrate that GenF significantly outperforms a diverse range of state-of-the-art benchmarks and classical approaches. Specifically, we find a 5% - 11% improvement in predictive performance (mean absolute error) while having a 15% - 50% reduction in parameters compared to the benchmarks. Lastly, we conduct an ablation study to further explore and demonstrate the effectiveness of the components comprising GenF.
translated by 谷歌翻译
远程时间序列的预测通常基于两种现有的预测策略之一:直接预测和迭代预测,前者提供较低的偏见,高方差预测,后来导致差异较低,高偏差预测。在本文中,我们提出了一种称为生成预测(GENF)的新预测策略,该策略在接下来的几个时间步骤中生成合成数据,然后根据生成和观察到的数据进行远程预测。从理论上讲,我们证明GENF能够更好地平衡预测差异和偏见,从而导致预测误差要小得多。我们通过三个组件实现GENF:(i)基于合成时间序列数据生成的基于wasserstein生成对抗网络(GAN)的新型生成对抗网络(GAN)的发电机,称为CWGAN-TS。 (ii)基于变压器的预测变量,它使用生成和观察到的数据进行远程预测。 (iii)一种信息理论聚类算法,以改善CWGAN-TS和基于变压器预测指标的训练。五个公共数据集的实验结果表明,GENF明显优于各种各样的最先进的基准和经典方法。具体而言,我们发现预测性能提高了5% - 11%,而与基准相比,参数降低了15%-50%。最后,我们进行了一项消融研究,以证明包含GENF的组件的有效性。
translated by 谷歌翻译
最近,对于长期时间序列预测(LTSF)任务,基于变压器的解决方案激增。尽管过去几年的表现正在增长,但我们质疑这项研究中这一研究的有效性。具体而言,可以说,变形金刚是最成功的解决方案,是在长序列中提取元素之间的语义相关性。但是,在时间序列建模中,我们要在一组连续点的有序集中提取时间关系。在采用位置编码和使用令牌将子系列嵌入变压器中的同时,有助于保留某些订购信息,但\ emph {置换不变}的自我注意力专注机制的性质不可避免地会导致时间信息损失。为了验证我们的主张,我们介绍了一组名为LTSF线性的令人尴尬的简单单层线性模型,以进行比较。在九个现实生活数据集上的实验结果表明,LTSF线性在所有情况下都超过现有的基于变压器的LTSF模型,并且通常要大幅度较大。此外,我们进行了全面的经验研究,以探索LTSF模型各种设计元素对其时间关系提取能力的影响。我们希望这一令人惊讶的发现为LTSF任务打开了新的研究方向。我们还主张重新审视基于变压器解决方案对其他时间序列分析任务(例如,异常检测)的有效性。代码可在:\ url {https://github.com/cure-lab/ltsf-linear}中获得。
translated by 谷歌翻译
时间变化数量的估计是医疗保健和金融等领域决策的基本组成部分。但是,此类估计值的实际实用性受到它们量化预测不确定性的准确程度的限制。在这项工作中,我们解决了估计高维多元时间序列的联合预测分布的问题。我们提出了一种基于变压器体系结构的多功能方法,该方法使用基于注意力的解码器估算关节分布,该解码器可被学会模仿非参数Copulas的性质。最终的模型具有多种理想的属性:它可以扩展到数百个时间序列,支持预测和插值,可以处理不规则和不均匀的采样数据,并且可以在训练过程中无缝地适应丢失的数据。我们从经验上证明了这些属性,并表明我们的模型在多个现实世界数据集上产生了最新的预测。
translated by 谷歌翻译
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
translated by 谷歌翻译
时间序列数据生成近年来越来越受到关注。已经提出了几种生成的对抗网络(GaN)的方法通常是假设目标时间序列数据良好格式化并完成的假设来解决问题。然而,现实世界时间序列(RTS)数据远离该乌托邦,例如,具有可变长度的长序列和信息缺失数据,用于设计强大的发电算法的棘手挑战。在本文中,我们向RTS数据提出了一种新的生成框架 - RTSGAN来解决上述挑战。 RTSGAN首先学习编码器 - 解码器模块,该模块提供时间序列实例和固定维度潜在载体之间的映射,然后学习生成模块以在同一潜在空间中生成vectors。通过组合发电机和解码器,RTSGAN能够生成尊重原始特征分布和时间动态的RTS。为了生成具有缺失值的时间序列,我们进一步用观察嵌入层和决定和生成解码器装备了RTSGAN,以更好地利用信息缺失模式。四个RTS数据集上的实验表明,该框架在用于下游分类和预测任务的合成数据实用程序方面优于前一代方法。
translated by 谷歌翻译
时间序列预测是重要的应用领域的核心,对机器学习算法构成了重大挑战。最近,神经网络体系结构已广泛应用于时间序列的预测问题。这些模型中的大多数都是通过最大程度地减少损失函数来衡量预测偏离实际值的训练的。典型的损耗函数包括均方根误差(MSE)和平均绝对误差(MAE)。在存在噪声和不确定性的情况下,神经网络模型倾向于复制时间序列的最后观察值,从而限制了它们对现实数据的适用性。在本文中,我们提供了上述问题的形式定义,还提供了观察到问题的预测的一些示例。我们还提出了一个正规化项,对先前看到的值的复制进行了惩罚。我们在合成数据集和现实世界数据集上评估了拟议的正规化项。我们的结果表明,正则化项会在一定程度上缓解上述问题,并产生更健壮的模型。
translated by 谷歌翻译
时间序列数据在研究以及各种工业应用中无处不在。有效地分析可用的历史数据并提供对未来的见解,使我们能够做出有效的决策。最近的研究见证了基于变压器的架构的出色表现,尤其是在《远距离时间序列》的政权预测中。但是,稀疏变压器体系结构的当前状态无法将其简化和上取样过程磨损,无法以与输入相似的分辨率产生输出。我们提出了基于新颖的Y形编码器架构的Yformer模型,该架构(1)在U-NET启发的体系结构中使用从缩小的编码层到相应的UPSMPLED DEXODER层的直接连接,(2)组合了降尺度/降压/以稀疏的注意来提高采样,以捕获远距离效应,(3)通过添加辅助重建损失来稳定编码器堆栈。已经在四个基准数据集上使用相关基线进行了广泛的实验,与单变量和多元设置的艺术现状相比,MAE的平均改善为19.82,18.41百分比和13.62,11.85百分比MAE。
translated by 谷歌翻译
Time series forecasting is an important problem across many domains, including predictions of solar plant energy output, electricity consumption, and traffic jam situation. In this paper, we propose to tackle such forecasting problem with Transformer [1]. Although impressed by its performance in our preliminary study, we found its two major weaknesses: (1) locality-agnostics: the point-wise dotproduct self-attention in canonical Transformer architecture is insensitive to local context, which can make the model prone to anomalies in time series; (2) memory bottleneck: space complexity of canonical Transformer grows quadratically with sequence length L, making directly modeling long time series infeasible. In order to solve these two issues, we first propose convolutional self-attention by producing queries and keys with causal convolution so that local context can be better incorporated into attention mechanism. Then, we propose LogSparse Transformer with only O(L(log L) 2 ) memory cost, improving forecasting accuracy for time series with fine granularity and strong long-term dependencies under constrained memory budget. Our experiments on both synthetic data and realworld datasets show that it compares favorably to the state-of-the-art.
translated by 谷歌翻译
神经预测的最新进展加速了大规模预测系统的性能。然而,长途预测仍然是一项非常艰巨的任务。困扰任务的两个常见挑战是预测的波动及其计算复杂性。我们介绍了N-HITS,该模型通过结合新的分层插值和多率数据采样技术来解决挑战。这些技术使提出的方法能够顺序组装其预测,并在分解输入信号并合成预测的同时强调不同频率和尺度的组件。我们证明,在平稳性的情况下,层次结构插值技术可以有效地近似于任意长的视野。此外,我们从长远的预测文献中进行了广泛的大规模数据集实验,证明了我们方法比最新方法的优势,在该方法中,N-HITS可提供比最新的16%的平均准确性提高。变压器体系结构在减少计算时间的同时(50次)。我们的代码可在https://bit.ly/3jlibp8上找到。
translated by 谷歌翻译
在本文中,我们呈现SSDNet,这是一个新的时间序列预测的深层学习方法。SSDNet将变压器架构与状态空间模型相结合,提供概率和可解释的预测,包括趋势和季节性成分以及前一步对预测很重要。变压器架构用于学习时间模式并直接有效地估计状态空间模型的参数,而无需对卡尔曼滤波器的需要。我们全面评估了SSDNET在五个数据集上的性能,显示SSDNet是一种有效的方法,可在准确性和速度,优于最先进的深度学习和统计方法方面是一种有效的方法,能够提供有意义的趋势和季节性组件。
translated by 谷歌翻译
深度学习已被积极应用于预测时间序列,从而导致了大量新的自回归模型体系结构。然而,尽管基于时间指数的模型具有吸引人的属性,例如随着时间的推移是连续信号函数,导致表达平滑,但对它们的关注很少。实际上,尽管基于天真的深度指数模型比基于经典时间指数的模型的手动预定义函数表示表达得多,但由于缺乏电感偏见和时间序列的非平稳性,它们的预测不足以预测。在本文中,我们提出了DeepTime,这是一种基于深度指数的模型,该模型通过元学习公式训练,该公式克服了这些局限性,从而产生了有效而准确的预测模型。对现实世界数据集的广泛实验表明,我们的方法通过最先进的方法实现了竞争成果,并且高效。代码可从https://github.com/salesforce/deeptime获得。
translated by 谷歌翻译
多元时间序列预测已在各种领域(包括金融,交通,能源和医疗保健)中广泛范围的应用程序。为了捕获复杂的时间模式,大量研究设计了基于RNN,GNN和Transformers的许多变体的复杂神经网络体系结构。但是,复杂的模型在计算上通常是昂贵的,因此当应用于大型现实世界数据集时,在训练和推理效率方面面临严重的挑战。在本文中,我们介绍了Lightts,这是一种基于简单的基于MLP的结构的轻度深度学习体系结构。 LightT的关键思想是在两种微妙的下采样策略之上应用基于MLP的结构,包括间隔抽样和连续采样,灵感来自至关重要的事实,即下采样时间序列通常保留其大多数信息。我们对八个广泛使用的基准数据集进行了广泛的实验。与现有的最新方法相比,Lightts在其中五个方面表现出更好的性能,其余的性能可比性。此外,Lightts高效。与最大的基准数据集上的先前SOTA方法相比,它使用的触发器少于5%。此外,Lightts的预测准确性与以前的SOTA方法相比,在长序列预测任务中,预测准确性的差异要小得多。
translated by 谷歌翻译
时间序列数据在现实世界应用中无处不在。但是,最常见的问题之一是,时间序列数据可能会通过数据收集过程的固有性质丢失值。因此,必须从多元(相关)时间序列数据中推出缺失值,这对于改善预测性能的同时做出准确的数据驱动决策至关重要。插补的常规工作简单地删除缺失值或基于平均/零填充它们。尽管基于深层神经网络的最新作品显示出了显着的结果,但它们仍然有一个限制来捕获多元时间序列的复杂生成过程。在本文中,我们提出了一种用于多变量时间序列数据的新型插补方法,称为sting(使用GAN基于自我注意的时间序列插补网络)。我们利用生成的对抗网络和双向复发性神经网络来学习时间序列的潜在表示。此外,我们引入了一种新型的注意机制,以捕获整个序列的加权相关性,并避免无关序列带来的潜在偏见。三个现实世界数据集的实验结果表明,刺痛在插补精度以及具有估算值的下游任务方面优于现有的最新方法。
translated by 谷歌翻译
延长预测时间是对真实应用的危急需求,例如极端天气预警和长期能源消耗规划。本文研究了时间序列的长期预测问题。基于现有的变压器的模型采用各种自我关注机制来发现远程依赖性。然而,长期未来的复杂时间模式禁止模型找到可靠的依赖项。此外,变压器必须采用长期级效率的稀疏版本的点明显自我关注,从而导致信息利用瓶颈。超越变形金刚,我们将自动运气设计为具有自动相关机制的新型分解架构。我们突破了序列分解的预处理公约,并将其翻新为深层模型的基本内部。这种设计为复杂的时间序列具有渐进式分解容量的自动成形。此外,由随机过程理论的启发,我们基于串联周期性设计自相关机制,这在子系列级别进行了依赖关系发现和表示聚合。自动相关性效率和准确性的自我关注。在长期预测中,自动成形器产生最先进的准确性,六个基准测试中的相对改善38%,涵盖了五种实际应用:能源,交通,经济,天气和疾病。此存储库中可用的代码:\ url {https://github.com/thuml/autoformer}。
translated by 谷歌翻译
各种深度学习模型,尤其是一些最新的基于变压器的方法,已大大改善了长期时间序列预测的最新性能。但是,这些基于变压器的模型遭受了严重的恶化性能,并延长了输入长度除了使用扩展的历史信息。此外,这些方法倾向于在长期预测中处理复杂的示例,并增加模型复杂性,这通常会导致计算的显着增加和性能较低的鲁棒性(例如,过度拟合)。我们提出了一种新型的神经网络架构,称为Treedrnet,以进行更有效的长期预测。受稳健回归的启发,我们引入了双重残差链接结构,以使预测更加稳健。对Kolmogorov-Arnold表示定理进行了明确的介绍,并明确介绍了特征选择,模型集合和树结构,以进一步利用扩展输入序列,从而提高了可靠的输入序列和Treedrnet的代表力。与以前的顺序预测工作的深层模型不同,Treedrnet完全建立在多层感知下,因此具有很高的计算效率。我们广泛的实证研究表明,Treedrnet比最先进的方法更有效,将预测错误降低了20%至40%。特别是,Treedrnet的效率比基于变压器的方法高10倍。该代码将很快发布。
translated by 谷歌翻译
Time series, sets of sequences in chronological order, are essential data in statistical research with many forecasting applications. Although recent performance in many Transformer-based models has been noticeable, long multi-horizon time series forecasting remains a very challenging task. Going beyond transformers in sequence translation and transduction research, we observe the effects of down-and-up samplings that can nudge temporal saliency patterns to emerge in time sequences. Motivated by the mentioned observation, in this paper, we propose a novel architecture, Temporal Saliency Detection (TSD), on top of the attention mechanism and apply it to multi-horizon time series prediction. We renovate the traditional encoder-decoder architecture by making as a series of deep convolutional blocks to work in tandem with the multi-head self-attention. The proposed TSD approach facilitates the multiresolution of saliency patterns upon condensed multi-heads, thus progressively enhancing complex time series forecasting. Experimental results illustrate that our proposed approach has significantly outperformed existing state-of-the-art methods across multiple standard benchmark datasets in many far-horizon forecasting settings. Overall, TSD achieves 31% and 46% relative improvement over the current state-of-the-art models in multivariate and univariate time series forecasting scenarios on standard benchmarks. The Git repository is available at https://github.com/duongtrung/time-series-temporal-saliency-patterns.
translated by 谷歌翻译
多元长序列时间序列预测(M-LSTF)是一个实用但具有挑战性的问题。与传统的计时器序列预测任务不同,M-LSTF任务从两个方面更具挑战性:1)M-LSTF模型需要在多个时间功能之间和多个时间序列之间学习时间序列模式; 2)在滚动预测设置下,两个连续训练样本之间的相似性随着预测长度的增加而增加,这使模型更容易过度拟合。在本文中,我们提出了一个可推广的内存驱动变压器,以靶向M-LSTF问题。具体而言,我们首先提出一个全局级内存组件,以通过集成多个时间序列功能来驱动预测过程。此外,我们采用了一种进步的方式来训练我们的模型以提高其普遍性,在这种情况下,我们逐渐向培训样品引入伯努利的噪音。已经在多个字段上对五个不同的数据集进行了广泛的实验。实验结果表明,我们的方法可以无缝地插入不同的基于变压器的模型中,以提高其性能至大约30%。特别是,这是我们最好的知识专门关注M-LSTF任务的第一项工作。
translated by 谷歌翻译
最近的研究表明,诸如RNN和Transformers之类的深度学习模型为长期预测时间序列带来了显着的性能增长,因为它们有效地利用了历史信息。但是,我们发现,如何在神经网络中保存历史信息,同时避免过度适应历史上的噪音,这仍然有很大的改进空间。解决此问题可以更好地利用深度学习模型的功能。为此,我们设计了一个\ textbf {f}要求\ textbf {i} mpraved \ textbf {l} egendre \ textbf {m} emory模型,或{\ bf film}:它应用了legendre promotions topimate legendre provientions近似历史信息,近似历史信息,使用傅立叶投影来消除噪声,并添加低级近似值以加快计算。我们的实证研究表明,所提出的膜显着提高了由(\ textbf {20.3 \%},\ textbf {22.6 \%})的多变量和单变量长期预测中最新模型的准确性。我们还证明,这项工作中开发的表示模块可以用作一般插件,以提高其他深度学习模块的长期预测性能。代码可从https://github.com/tianzhou2011/film/获得。
translated by 谷歌翻译
在本文中,我们介绍了蒙面的多步多变量预测(MMMF),这是一个新颖而普遍的自我监督学习框架,用于时间序列预测,并提供已知的未来信息。在许多真实世界的预测情况下,已知一些未来的信息,例如,在进行短期到中期的电力需求预测或进行飞机出发预测时的油价预测时,天气信息。现有的机器学习预测框架可以分为(1)基于样本的方法,在此方法中进行每个预测,以及(2)时间序列回归方法,其中未来信息未完全合并。为了克服现有方法的局限性,我们提出了MMMF,这是一个培训能够生成一系列输出的神经网络模型的框架,将过去的时间信息和有关未来的已知信息结合在一起,以做出更好的预测。实验在两个现实世界数据集上进行(1)中期电力需求预测,以及(2)前两个月的飞行偏离预测。他们表明,所提出的MMMF框架的表现不仅优于基于样本的方法,而且具有与完全相同的基本模型的现有时间序列预测模型。此外,一旦通过MMMF进行了神经网络模型,其推理速度与接受传统回归配方训练的相同模型的推理速度相似,从而使MMMF成为现有回归训练的时间序列的更好替代品,如果有一些可用的未来,信息。
translated by 谷歌翻译