As the COVID-19 pandemic puts pressure on healthcare systems worldwide, the computed tomography image based AI diagnostic system has become a sustainable solution for early diagnosis. However, the model-wise vulnerability under adversarial perturbation hinders its deployment in practical situation. The existing adversarial training strategies are difficult to generalized into medical imaging field challenged by complex medical texture features. To overcome this challenge, we propose a Contour Attention Preserving (CAP) method based on lung cavity edge extraction. The contour prior features are injected to attention layer via a parameter regularization and we optimize the robust empirical risk with hybrid distance metric. We then introduce a new cross-nation CT scan dataset to evaluate the generalization capability of the adversarial robustness under distribution shift. Experimental results indicate that the proposed method achieves state-of-the-art performance in multiple adversarial defense and generalization tasks. The code and dataset are available at https://github.com/Quinn777/CAP.
translated by 谷歌翻译
现代神经网络Excel在图像分类中,但它们仍然容易受到常见图像损坏,如模糊,斑点噪音或雾。最近的方法关注这个问题,例如Augmix和Deepaulment,引入了在预期运行的防御,以期望图像损坏分布。相比之下,$ \ ell_p $ -norm界限扰动的文献侧重于针对最坏情况损坏的防御。在这项工作中,我们通过提出防范内人来调和两种方法,这是一种优化图像到图像模型的参数来产生对外损坏的增强图像的技术。我们理论上激发了我们的方法,并为其理想化版本的一致性以及大纲领提供了足够的条件。我们的分类机器在预期对CiFar-10-C进行的常见图像腐败基准上提高了最先进的,并改善了CIFAR-10和ImageNet上的$ \ ell_p $ -norm有界扰动的最坏情况性能。
translated by 谷歌翻译
变压器出现为可视识别的强大工具。除了在广泛的视觉基准上展示竞争性能外,最近的作品还争辩说,变形金刚比卷曲神经网络(CNNS)更强大。令人惊讶的是,我们发现这些结论是从不公平的实验设置中得出的,其中变压器和CNN在不同的尺度上比较,并用不同的训练框架应用。在本文中,我们的目标是在变压器和CNN之间提供第一个公平和深入的比较,重点是鲁棒性评估。通过我们的统一培训设置,我们首先挑战以前的信念,使得在衡量对抗性鲁棒性时越来越多的CNN。更令人惊讶的是,如果他们合理地采用变形金刚的培训食谱,我们发现CNNS可以很容易地作为捍卫对抗性攻击的变形金刚。在关于推广样本的泛化的同时,我们显示了对(外部)大规模数据集的预训练不是对实现变压器来实现比CNN更好的性能的根本请求。此外,我们的消融表明,这种更强大的概括主要受到变压器的自我关注架构本身的影响,而不是通过其他培训设置。我们希望这项工作可以帮助社区更好地理解和基准变压器和CNN的鲁棒性。代码和模型在https://github.com/ytongbai/vits-vs-cnns上公开使用。
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
对抗性例子的现象说明了深神经网络最基本的漏洞之一。在推出这一固有的弱点的各种技术中,对抗性训练已成为学习健壮模型的最有效策略。通常,这是通过平衡强大和自然目标来实现的。在这项工作中,我们旨在通过执行域不变的功能表示,进一步优化鲁棒和标准准确性之间的权衡。我们提出了一种新的对抗训练方法,域不变的对手学习(DIAL),该方法学习了一个既健壮又不变的功能表示形式。拨盘使用自然域及其相应的对抗域上的域对抗神经网络(DANN)的变体。在源域由自然示例组成和目标域组成的情况下,是对抗性扰动的示例,我们的方法学习了一个被限制的特征表示,以免区分自然和对抗性示例,因此可以实现更强大的表示。拨盘是一种通用和模块化技术,可以轻松地将其纳入任何对抗训练方法中。我们的实验表明,将拨号纳入对抗训练过程中可以提高鲁棒性和标准精度。
translated by 谷歌翻译
卷积神经网络(CNN)已经超越了传统的医学图像分类方法。然而,CNN容易受到对抗的攻击可能导致医学应用中的灾难性后果。尽管逆势噪声通常由攻击算法产生,但是可能存在白噪声诱导的对抗性样本,因此威胁是真实的。在这项研究中,我们提出了一种名为IMA的新型训练方法,以改善CNN的鲁棒性,对抗对抗噪音。在培训期间,IMA方法增加了输入空间中的训练样本的边缘,即,移动CNN决策边界远离训练样本,以改善鲁棒性。 IMA方法在强大的100-PGD白盒对抗性攻击下对公共可用数据集进行评估,结果表明,该方法在噪声数据上显着提高了CNN分类和分割精度,同时在清洁数据上保持高精度。我们希望我们的方法可以促进医疗领域的强劲应用的发展。
translated by 谷歌翻译
This paper presents our solution for the 2nd COVID-19 Severity Detection Competition. This task aims to distinguish the Mild, Moderate, Severe, and Critical grades in COVID-19 chest CT images. In our approach, we devise a novel infection-aware 3D Contrastive Mixup Classification network for severity grading. Specifcally, we train two segmentation networks to first extract the lung region and then the inner lesion region. The lesion segmentation mask serves as complementary information for the original CT slices. To relieve the issue of imbalanced data distribution, we further improve the advanced Contrastive Mixup Classification network by weighted cross-entropy loss. On the COVID-19 severity detection leaderboard, our approach won the first place with a Macro F1 Score of 51.76%. It significantly outperforms the baseline method by over 11.46%.
translated by 谷歌翻译
这项工作解决了中央机器学习问题的问题,即在分布(OOD)测试集上的性能降解问题。这个问题在基于医学成像的诊断系统中尤为明显,该系统似乎是准确的,但在新医院/数据集中进行测试时失败。最近的研究表明,该系统可能会学习快捷方式和非相关功能,而不是可推广的功能,即所谓的良好功能。我们假设对抗性训练可以消除快捷方式功能,而显着性训练可以滤除非相关功能。两者都是OOD测试集的性能降解的滋扰功能。因此,我们为深度神经网络制定了一种新颖的模型培训方案,以学习分类和/或检测任务的良好功能,以确保在OOD测试集上的概括性性能。实验结果定性和定量证明了我们使用基准CXR图像数据集在分类任务上的基准CXR图像数据集的出色性能。
translated by 谷歌翻译
在难以察觉的对抗性示例攻击时被发现深度神经网络是不稳定的,这对于它施加到需要高可靠性的医学诊断系统是危险的。然而,在自然图像中具有良好效果的防御方法可能不适合医疗诊断任务。预处理方法(例如,随机调整大小,压缩)可能导致医学图像中的小病变特征的损失。在增强的数据集中培训网络对已经在线部署的医疗模型也不实用。因此,有必要为医疗诊断任务设计易于部署和有效的防御框架。在本文中,我们为反对对抗性攻击(即Medrdf)的医疗净化模型提出了较强和初稿的初步诊断框架。它采用了Pertined Medical模型的推理时间。具体地,对于每个测试图像,MEDRDF首先创建它的大量噪声副本,并从预训经医学诊断模型获得这些副本的输出标签。然后,基于这些副本的标签,MEDRDF通过多数投票输出最终的稳健诊断结果。除了诊断结果之外,MedRDF还产生强大的公制(RM)作为结果的置信度。因此,利用MEDRDF将预先训练的非强大诊断模型转换为强大的,是方便且可靠的。 Covid-19和Dermamnist数据集的实验结果验证了MEDRDF在提高医疗模型的稳健性方面的有效性。
translated by 谷歌翻译
为了应对对抗性实例的威胁,对抗性培训提供了一种有吸引力的选择,可以通过在线增强的对抗示例中的培训模型提高模型稳健性。然而,大多数现有的对抗训练方法通过强化对抗性示例来侧重于提高鲁棒的准确性,但忽略了天然数据和对抗性实施例之间的增加,导致自然精度急剧下降。为了维持自然和强大的准确性之间的权衡,我们从特征适应的角度缓解了转变,并提出了一种特征自适应对抗训练(FAAT),这些培训(FAAT)跨越自然数据和对抗示例优化类条件特征适应。具体而言,我们建议纳入一类条件鉴别者,以鼓励特征成为(1)类鉴别的和(2)不变导致对抗性攻击的变化。新型的FAAT框架通过在天然和对抗数据中产生具有类似分布的特征来实现自然和强大的准确性之间的权衡,并实现从类鉴别特征特征中受益的更高的整体鲁棒性。在各种数据集上的实验表明,FAAT产生更多辨别特征,并对最先进的方法表现有利。代码在https://github.com/visionflow/faat中获得。
translated by 谷歌翻译
数据增强是一种提高深神经网络(DNN)的鲁棒性的简单而有效的方法。多样性和硬度是数据增强的两个互补维度,以实现稳健性。例如,Augmix探讨了各种增强套的随机组成,以增强更广泛的覆盖,而对抗性培训产生过态度硬质样品以发现弱点。通过此激励,我们提出了一个数据增强框架,被称为奥古曼克,统一多样性和硬度的两个方面。 Augmax首先将多个增强运算符进行随机样本,然后学习所选操作员的对抗性混合物。作为更强大的数据增强形式,奥格梅纳队导致了一个明显的增强输入分布,使模型培训更具挑战性。为了解决这个问题,我们进一步设计了一个解散的归一化模块,称为Dubin(双批次和实例规范化),其解除了奥古曼克斯出现的实例 - 明智的特征异质性。实验表明,Augmax-Dubin将显着改善分配的鲁棒性,优于现有技术,在CiFar10-C,CiFar100-C,微小Imagenet-C和Imagenet-C上以3.03%,3.49%,1.82%和0.71%。可提供代码和预磨料模型:https://github.com/vita-group/augmax。
translated by 谷歌翻译
对抗性训练(AT)捍卫深层神经网络免受对抗攻击。限制其实际应用的一个挑战是对干净样品的性能降解。以前的作品确定的主要瓶颈是广泛使用的批准化(BN),它努力为AT中的清洁和对抗训练样本的不同统计数据建模。尽管主要的方法是扩展BN以捕获这种分布的混合物,但我们建议通过去除AT中的所有BN层来完全消除这种瓶颈。我们的无标准器稳健训练(NOFROST)方法将无标准器网络的最新进展扩展到了AT,因为它在处理混合分配挑战方面未开发优势。我们表明,Nofrost在干净的样品准确性上只有轻微的牺牲才能实现对抗性的鲁棒性。在具有RESNET50的Imagenet上,Nofrost可实现$ 74.06 \%$清洁精度,从标准培训中降低了$ 2.00 \%$。相比之下,基于BN的基于BN的$ 59.28 \%$清洁准确性,从标准培训中获得了$ 16.78 \%$的大幅下降。此外,Nofrost在PGD Attack上达到了23.56美元的$ 23.56 \%$的对抗性,这提高了基于BN AT的13.57美元\%$ $鲁棒性。我们观察到更好的模型平滑度和来自Nofrost的较大决策边缘,这使得模型对输入扰动的敏感程度降低,从而更加健壮。此外,当将更多的数据增强纳入NOFROST时,它可以针对多个分配变化实现全面的鲁棒性。代码和预训练的模型在https://github.com/amazon-research/normalizer-free-robust-training上公开。
translated by 谷歌翻译
深度神经网络具有强大的功能,但它们也有缺点,例如它们对对抗性例子,噪音,模糊,遮挡等的敏感性。先前提出了许多以前的工作来提高特定的鲁棒性。但是,我们发现,在神经网络模型的额外鲁棒性或概括能力的牺牲下,通常会提高特定的鲁棒性。特别是,在改善对抗性鲁棒性时,对抗性训练方法在不受干扰的数据上严重损害了对不受干扰数据的概括性能。在本文中,我们提出了一种称为AugRmixat的新数据处理和培训方法,该方法可以同时提高神经网络模型的概括能力和多重鲁棒性。最后,我们验证了AUGRMIXAT对CIFAR-10/100和Tiny-Imagenet数据集的有效性。实验表明,Augrmixat可以改善模型的概括性能,同时增强白色框的鲁棒性,黑盒鲁棒性,常见的损坏鲁棒性和部分遮挡鲁棒性。
translated by 谷歌翻译
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
translated by 谷歌翻译
在本文中,我们询问视觉变形金刚(VIT)是否可以作为改善机器学习模型对抗逃避攻击的对抗性鲁棒性的基础结构。尽管较早的作品集中在改善卷积神经网络上,但我们表明VIT也非常适合对抗训练以实现竞争性能。我们使用自定义的对抗训练配方实现了这一目标,该配方是在Imagenet数据集的一部分上使用严格的消融研究发现的。与卷积相比,VIT的规范培训配方建议强大的数据增强,部分是为了补偿注意力模块的视力归纳偏置。我们表明,该食谱在用于对抗训练时可实现次优性能。相比之下,我们发现省略所有重型数据增强,并添加一些额外的零件($ \ varepsilon $ -Warmup和更大的重量衰减),从而大大提高了健壮的Vits的性能。我们表明,我们的配方在完整的Imagenet-1k上概括了不同类别的VIT体系结构和大规模模型。此外,调查了模型鲁棒性的原因,我们表明,在使用我们的食谱时,在训练过程中产生强烈的攻击更加容易,这会在测试时提高鲁棒性。最后,我们通过提出一种量化对抗性扰动的语义性质并强调其与模型的鲁棒性的相关性来进一步研究对抗训练的结果。总体而言,我们建议社区应避免将VIT的规范培训食谱转换为在对抗培训的背景下进行强大的培训和重新思考常见的培训选择。
translated by 谷歌翻译
在对抗文献中,鲁棒性和准确性之间的权衡得到了广泛的研究。尽管仍然有争议,但普遍的观点是,从经验或理论上,这种权衡是固有的。因此,我们在对抗训练中挖掘了这种权衡的起源,发现它可能源于不当定义的可靠错误,该错误施加了局部不变性的诱导偏见 - 对平稳性的过度校正。鉴于此,我们主张采用局部模棱两可来描述健壮模型的理想行为,从而导致自洽的强大错误称为得分。根据定义,得分有助于稳健性与准确性之间的对帐,同时仍通过稳健优化处理最坏情况的不确定性。通过简单地将KL差异替换为距离指标的变体,得分可以有效地最小化。从经验上讲,我们的模型在AutoAttact下的强力板上实现了最高的性能。此外,得分提供了指导性见解,以解释在健壮模型上观察到的过度拟合现象和语义输入梯度。代码可在https://github.com/p2333/score上找到。
translated by 谷歌翻译
世界目前正在经历持续的传染病大流行病,该传染病是冠状病毒疾病2019(即covid-19),这是由严重的急性呼吸综合征冠状病毒2(SARS-COV-2)引起的。计算机断层扫描(CT)在评估感染的严重程度方面发挥着重要作用,并且还可用于识别这些症状和无症状的Covid-19载体。随着Covid-19患者的累积数量的激增,放射科医师越来越强调手动检查CT扫描。因此,自动化3D CT扫描识别工具的需求量高,因为手动分析对放射科医师耗时,并且它们的疲劳可能导致可能的误判。然而,由于位于不同医院的CT扫描仪的各种技术规范,CT图像的外观可能显着不同,导致许多自动图像识别方法的失败。因此,多域和多扫描仪研究的多域移位问题是不可能对可靠识别和可再现和客观诊断和预后至关重要的至关重要。在本文中,我们提出了Covid-19 CT扫描识别模型即Coronavirus信息融合和诊断网络(CIFD-NET),可以通过新的强大弱监督的学习范式有效地处理多域移位问题。与其他最先进的方法相比,我们的模型可以可靠,高效地解决CT扫描图像中不同外观的问题。
translated by 谷歌翻译
通过回顾他们之前看到的类似未腐败的图像,人类的注意力可以直观地适应图像的损坏区域。这种观察结果激发了我们通过考虑清洁的对应物来提高对抗性图像的注意。为了实现这一目标,我们将联想的对抗性学习(aal)介绍进入对抗的学习,以指导选择性攻击。我们为引人注目和攻击(扰动)之间的内在关系作为提高其互动的耦合优化问题。这导致注意反向触发算法,可以有效提高注意力的对抗鲁棒性。我们的方法是通用的,可用于通过简单选择不同的核来解决各种任务,以便为特定攻击选择其他区域的关联注意。实验结果表明,选择性攻击提高了模型的性能。我们表明,与基线相比,我们的方法提高了8.32%对想象成的识别准确性。它还将Pascalvoc的物体检测图提高了2.02%,并在MiniimAgenet上的几次学习识别准确性为1.63%。
translated by 谷歌翻译
几个数据增强方法部署了未标记的分配(UID)数据,以弥合神经网络的培训和推理之间的差距。然而,这些方法在UID数据的可用性方面具有明确的限制和伪标签上的算法的依赖性。在此,我们提出了一种数据增强方法,通过使用缺乏上述问题的分发(OOD)数据来改善对抗和标准学习的泛化。我们展示了如何在理论上使用每个学习场景中的数据来改进泛化,并通过Cifar-10,CiFar-100和ImageNet的子集进行化学理论分析。结果表明,即使在似乎与人类角度几乎没有相关的图像数据中也是不希望的特征。我们还通过与其他数据增强方法进行比较,介绍了所提出的方法的优点,这些方法可以在没有UID数据的情况下使用。此外,我们证明该方法可以进一步改善现有的最先进的对抗培训。
translated by 谷歌翻译
对抗训练(AT)在防御对抗例子方面表现出色。最近的研究表明,示例对于AT期间模型的最终鲁棒性并不同样重要,即,所谓的硬示例可以攻击容易表现出比对最终鲁棒性的鲁棒示例更大的影响。因此,保证硬示例的鲁棒性对于改善模型的最终鲁棒性至关重要。但是,定义有效的启发式方法来寻找辛苦示例仍然很困难。在本文中,受到信息瓶颈(IB)原则的启发,我们发现了一个具有高度共同信息及其相关的潜在表示的例子,更有可能受到攻击。基于此观察,我们提出了一种新颖有效的对抗训练方法(Infoat)。鼓励Infoat找到具有高相互信息的示例,并有效利用它们以提高模型的最终鲁棒性。实验结果表明,与几种最先进的方法相比,Infoat在不同数据集和模型之间达到了最佳的鲁棒性。
translated by 谷歌翻译