变压器出现为可视识别的强大工具。除了在广泛的视觉基准上展示竞争性能外,最近的作品还争辩说,变形金刚比卷曲神经网络(CNNS)更强大。令人惊讶的是,我们发现这些结论是从不公平的实验设置中得出的,其中变压器和CNN在不同的尺度上比较,并用不同的训练框架应用。在本文中,我们的目标是在变压器和CNN之间提供第一个公平和深入的比较,重点是鲁棒性评估。通过我们的统一培训设置,我们首先挑战以前的信念,使得在衡量对抗性鲁棒性时越来越多的CNN。更令人惊讶的是,如果他们合理地采用变形金刚的培训食谱,我们发现CNNS可以很容易地作为捍卫对抗性攻击的变形金刚。在关于推广样本的泛化的同时,我们显示了对(外部)大规模数据集的预训练不是对实现变压器来实现比CNN更好的性能的根本请求。此外,我们的消融表明,这种更强大的概括主要受到变压器的自我关注架构本身的影响,而不是通过其他培训设置。我们希望这项工作可以帮助社区更好地理解和基准变压器和CNN的鲁棒性。代码和模型在https://github.com/ytongbai/vits-vs-cnns上公开使用。
translated by 谷歌翻译
视觉变形金刚最近的成功是在图像识别中挥舞着卷积神经网络(CNN)的长期优势。具体而言,就稳健性而言,最近的研究发现,无论训练设置如何,变压器本质上比CNN更强大。此外,人们认为,变形金刚的这种优越性应该在很大程度上被认为是他们的自我注意力型建筑本身。在本文中,我们通过密切研究变压器的设计来质疑这种信念。我们的发现导致了三种高效的体系结构设计,以提高鲁棒性,但很简单,可以在几行代码中实现,即a)修补输入图像,b)扩大内核大小,c)降低激活层和归一化层。将这些组件融合在一起,我们能够构建纯CNN体系结构,而没有任何类似注意力的操作,这些操作比变形金刚更强大,甚至更健壮。我们希望这项工作可以帮助社区更好地了解强大的神经体系结构的设计。该代码可在https://github.com/ucsc-vlaa/robustcnn上公开获得。
translated by 谷歌翻译
在本文中,我们询问视觉变形金刚(VIT)是否可以作为改善机器学习模型对抗逃避攻击的对抗性鲁棒性的基础结构。尽管较早的作品集中在改善卷积神经网络上,但我们表明VIT也非常适合对抗训练以实现竞争性能。我们使用自定义的对抗训练配方实现了这一目标,该配方是在Imagenet数据集的一部分上使用严格的消融研究发现的。与卷积相比,VIT的规范培训配方建议强大的数据增强,部分是为了补偿注意力模块的视力归纳偏置。我们表明,该食谱在用于对抗训练时可实现次优性能。相比之下,我们发现省略所有重型数据增强,并添加一些额外的零件($ \ varepsilon $ -Warmup和更大的重量衰减),从而大大提高了健壮的Vits的性能。我们表明,我们的配方在完整的Imagenet-1k上概括了不同类别的VIT体系结构和大规模模型。此外,调查了模型鲁棒性的原因,我们表明,在使用我们的食谱时,在训练过程中产生强烈的攻击更加容易,这会在测试时提高鲁棒性。最后,我们通过提出一种量化对抗性扰动的语义性质并强调其与模型的鲁棒性的相关性来进一步研究对抗训练的结果。总体而言,我们建议社区应避免将VIT的规范培训食谱转换为在对抗培训的背景下进行强大的培训和重新思考常见的培训选择。
translated by 谷歌翻译
变压器模型在处理各种视觉任务方面表现出了有希望的有效性。但是,与训练卷积神经网络(CNN)模型相比,训练视觉变压器(VIT)模型更加困难,并且依赖于大规模训练集。为了解释这一观察结果,我们做出了一个假设,即\ textit {vit模型在捕获图像的高频组件方面的有效性较小,而不是CNN模型},并通过频率分析对其进行验证。受这一发现的启发,我们首先研究了现有技术从新的频率角度改进VIT模型的影响,并发现某些技术(例如,randaugment)的成功可以归因于高频组件的更好使用。然后,为了补偿这种不足的VIT模型能力,我们提出了HAT,该HAT可以通过对抗训练直接增强图像的高频组成部分。我们表明,HAT可以始终如一地提高各种VIT模型的性能(例如VIT-B的 +1.2%,Swin-B的 +0.5%),尤其是提高了仅使用Imagenet-的高级模型Volo-D5至87.3% 1K数据,并且优势也可以维持在分发数据的数据上,并转移到下游任务。该代码可在以下网址获得:https://github.com/jiawangbai/hat。
translated by 谷歌翻译
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples.We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [41] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%) and Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [24] which is trained with 3.5B Instagram images (∼3000× more than ImageNet) and ∼9.4× more parameters. Models are available at https://github.com/tensorflow/tpu/tree/ master/models/official/efficientnet.
translated by 谷歌翻译
近年来,已经开发了用于图像分类的新型体系结构组件,从变压器中使用的注意力和斑块开始。尽管先前的作品已经分析了建筑成分某些方面对对抗性攻击的鲁棒性,尤其是视觉变形金刚的影响,但对主要因素的理解仍然是有限的。我们比较了几个(非)固定分类器与不同的架构并研究其属性,包括对抗训练对学习特征的解释性和对看不见威胁模型的鲁棒性的影响。从Resnet到Convnext的消融揭示了关键的架构变化,导致$ 10 \%$更高$ \ ell_ \ ell_ \ infty $ bobustness。
translated by 谷歌翻译
数据混合(例如混合,cutmix,resizemix)是推进识别模型的重要组成部分。在本文中,我们专注于研究其在自我监督环境中的有效性。通过注意共享相同源图像的混合图像彼此内在相关,我们在此提议SDMP,缩写为$ \ textbf {s} $ imple $ \ textbf {d} $ ata $ \ ata $ \ textbf {m} $ ixing $ ixing $ \ textbf {p} $ rior,要捕获这个直接但必不可少的先验,并将混合图像定位为其他$ \ textbf {potition pairs} $,以促进自我监督的表示的学习。我们的实验验证了所提出的SDMP可以使数据混合有助于一组自学的学习框架(例如MoCo)实现更好的准确性和分布外的鲁棒性。更值得注意的是,我们的SDMP是成功利用数据混合以改善(而不是伤害)视觉变压器在自我监督的环境中的性能的第一种方法。代码可在https://github.com/oliverrensu/sdmp上公开获取
translated by 谷歌翻译
视觉变压器(VIT)是卷积神经网络(CNN)的强大替代方案,引起了很多关注。最近的工作表明,VIT也容易受到CNN等对抗性例子的影响。为了建立强大的VIT,一种直观的方法是应用对抗训练,因为它已被证明是完成强大CNN的最有效方法之一。但是,对抗性培训的一个主要局限性是其沉重的计算成本。 VIT所采用的自我注意力的机制是计算强度的操作,其费用随输入贴片的数量四次增加,从而使VIT上的对抗性训练更加耗时。在这项工作中,我们首先全面研究了有关各种视觉变压器的快速对抗训练,并说明了效率和鲁棒性之间的关系。然后,为了加快对VIT的对抗训练,我们提出了一种有效的注意力引导的对抗训练机制。具体而言,依靠自我注意的专长,我们在对抗训练过程中以注意引导策略的掉落策略积极地嵌入了每一层的某些斑块嵌入。纤细的自我发场模块大大加速了对VIT的对抗训练。只有65%的快速对抗训练时间,我们与具有挑战性的成像网基准相匹配。
translated by 谷歌翻译
对抗性训练已被证明是捍卫对抗性例子的最有效的补救措施之一,但通常会遭受在看不见的测试对手身上巨大的稳定性概括差距,被认为是\ emph {对抗性强大的概括性问题}。尽管最初是针对对抗性强大的概括的初步理解,但从建筑的角度来看,知之甚少。因此,本文试图通过系统地检查最具代表性的体系结构(例如,视觉变压器和CNN)来弥合差距。特别是,我们首先对Imagenette和CIFAR-10数据集进行了对抗训练的架构\ Emph {20}对几个对手(多个$ \ ell_p $ -norm -norm对照攻击)的架构,并发现视觉变形金刚(例如,PVT,Coatnet)经常产生更好的对抗性稳定性。为了进一步了解哪种建筑成分有利于对抗性的强大概括,我们深入研究了几个关键的构建块,并通过Rademacher复杂性的镜头揭示了这一事实,即更高的重量稀疏性对更好的对手的视觉变形金刚的强大良好概括有很大贡献,这通常可以实现这一目标,这是可以实现的。通过注意层。我们的广泛研究发现了建筑设计与对抗性稳定的概括之间的密切关系,并实例化了一些重要的见解。我们希望我们的发现可以帮助更好地理解设计强大的深度学习体系结构的机制。
translated by 谷歌翻译
视觉变压器(VIT)在各种计算机视觉任务中的成功促进了该无卷积网络的不断增长。 VIT在图像贴片上工作的事实使其可能与拼图拼图解决的问题有关,这是一项经典的自我监督的任务,旨在重新排序洗牌的顺序图像贴片回到其自然形式。尽管它很简单,但已证明解决拼图拼图对使用卷积神经网络(CNN)(例如自我监督的特征表示学习,领域的概括和细粒度分类)的任务有帮助。在本文中,我们探索了解决拼图拼图作为图像分类的自我监督的辅助损失,名为Jigsaw-Vit。我们展示了两种修改,可以使拼图优于标准VIT:丢弃位置嵌入和随机掩盖斑块。但是很简单,我们发现拼图vit能够改善标准VIT的概括和鲁棒性,这通常是一种权衡。在实验上,我们表明,在ImageNet上的大规模图像分类中,添加拼图拼图分支比VIT提供了更好的概括。此外,辅助任务还提高了对动物-10n,食物101N和服装的嘈杂标签的鲁棒性,也可以提高对抗性示例。我们的实施可从https://yingyichen-cyy.github.io/jigsaw-vit/获得。
translated by 谷歌翻译
积极的数据增强是视觉变压器(VIT)的强大泛化能力的关键组成部分。一种这样的数据增强技术是对抗性培训;然而,许多先前的作品表明,这通常会导致清洁的准确性差。在这项工作中,我们展示了金字塔对抗训练,这是一种简单有效的技术来提高韦维尔的整体性能。我们将其与“匹配”辍学和随机深度正则化配对,这采用了干净和对抗样品的相同辍学和随机深度配置。类似于Advprop的CNNS的改进(不直接适用于VIT),我们的金字塔对抗性训练会破坏分销准确性和vit和相关架构的分配鲁棒性之间的权衡。当Imagenet-1K数据训练时,它导致ImageNet清洁准确性的182美元的vit-B模型的精确度,同时由7美元的稳健性指标同时提高性能,从$ 1.76 \%$至11.45 \%$。我们为Imagenet-C(41.4 MCE),Imagenet-R($ 53.92 \%$),以及Imagenet-Sketch(41.04美元\%$)的新的最先进,只使用vit-b / 16骨干和我们的金字塔对抗训练。我们的代码将在接受时公开提供。
translated by 谷歌翻译
Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. These highperforming vision transformers are pre-trained with hundreds of millions of images using a large infrastructure, thereby limiting their adoption.In this work, we produce competitive convolution-free transformers by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with no external data.More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention. We show the interest of this token-based distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and models.
translated by 谷歌翻译
Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. These highperforming vision transformers are pre-trained with hundreds of millions of images using a large infrastructure, thereby limiting their adoption.In this work, we produce competitive convolutionfree transformers trained on ImageNet only using a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with no external data.We also introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention, typically from a convnet teacher. The learned transformers are competitive (85.2% top-1 acc.) with the state of the art on ImageNet, and similarly when transferred to other tasks. We will share our code and models.
translated by 谷歌翻译
通过快速梯度符号方法(FGSM)生成的样品(也称为FGSM-AT)生成的样品是一种计算上的简单方法,可以训练训练强大的网络。然而,在训练过程中,在Arxiv:2001.03994 [CS.LG]中发现了一种不稳定的“灾难性过度拟合”模式,在单个训练步骤中,强大的精度突然下降到零。现有方法使用梯度正规化器或随机初始化技巧来减轻此问题,而它们要么承担高计算成本或导致较低的稳健精度。在这项工作中,我们提供了第一项研究,该研究从三个角度彻底研究了技巧的集合:数据初始化,网络结构和优化,以克服FGSM-AT中的灾难性过度拟合。令人惊讶的是,我们发现简单的技巧,即a)掩盖部分像素(即使没有随机性),b)设置较大的卷积步幅和平滑的激活功能,或c)正规化第一卷积层的重量,可以有效地应对过度拟合问题。对一系列网络体系结构的广泛结果验证了每个提出的技巧的有效性,还研究了技巧的组合。例如,在CIFAR-10上接受了PREACTRESNET-18培训,我们的方法对PGD-50攻击者的准确性为49.8%,并且针对AutoAttack的精度为46.4%,这表明Pure FGSM-AT能够启用健壮的学习者。代码和模型可在https://github.com/ucsc-vlaa/bag-of-tricks-for-for-fgsm-at上公开获得。
translated by 谷歌翻译
由多种自我关注层组成的变压器,对适用于不同数据方式的通用学习原语,包括计算机视觉最新(SOTA)标准准确性的近期突破。什么仍然很大程度上未开发,是他们的稳健性评估和归因。在这项工作中,我们研究了视觉变压器(VIT)对共同腐败和扰动,分布换算和自然对抗例的鲁棒性。我们使用六种不同的多样化想象数据集关于强大的分类,进行vit模型和Sota卷积神经网络(CNNS)的全面性能比较,大转移。通过一系列系统地设计的实验,我们提供了分析,这些分析提供了定量和定性迹象,以解释为什么VITS确实更强大的学习者。例如,对于更少的参数和类似的数据集和预训练组合,VIT在ImageNet-A上给出了28.10%的前1个精度,这是比一位的可比较变体高4.3x。我们对图像掩蔽,傅里叶谱灵敏度和传播的分析,在离散余弦能量谱上揭示了Vit归属于改善鲁棒性的损伤性能。再现我们的实验的代码可在https://git.io/j3vo0上获得。
translated by 谷歌翻译
最近的视觉变压器(VIT)的进步已经证明了其在图像分类中的令人印象深刻的性能,这使其成为卷积神经网络(CNN)的有希望的替代品。与CNN不同,VIT表示作为图像斑块序列的输入图像。 PATCH-WISE输入图像表示提出了以下问题:与CNN相比,当各个输入图像贴片扰乱自然损坏或对抗性扰动时,如何进行VIT vit表现在这项工作中,我们研究了视觉变形金刚的稳健性,以修补扰动。令人惊讶的是,我们发现视觉变压器对自然腐蚀的斑块比CNN更腐蚀,而它们更容易受到对抗性补丁的影响。此外,我们进行广泛的定性和定量实验,以了解修补扰动的鲁棒性。我们透露,Vit对天然腐蚀斑块的更强烈的稳健性以及对抗对抗性斑块的更高脆弱性都是由注意机制引起的。具体而言,注意模型可以通过有效地忽略自然腐蚀斑块来帮助改善视觉变压器的稳健性。然而,当视力变压器被对手攻击时,注意机制可以很容易地愚弄更多地关注对抗扰动的斑块并导致错误。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Vision transformer (ViT) models exhibit substandard optimizability. In particular, they are sensitive to the choice of optimizer (AdamW vs. SGD), optimizer hyperparameters, and training schedule length. In comparison, modern convolutional neural networks are easier to optimize. Why is this the case? In this work, we conjecture that the issue lies with the patchify stem of ViT models, which is implemented by a stride-p p×p convolution (p = 16 by default) applied to the input image. This large-kernel plus large-stride convolution runs counter to typical design choices of convolutional layers in neural networks. To test whether this atypical design choice causes an issue, we analyze the optimization behavior of ViT models with their original patchify stem versus a simple counterpart where we replace the ViT stem by a small number of stacked stride-two 3×3 convolutions. While the vast majority of computation in the two ViT designs is identical, we find that this small change in early visual processing results in markedly different training behavior in terms of the sensitivity to optimization settings as well as the final model accuracy. Using a convolutional stem in ViT dramatically increases optimization stability and also improves peak performance (by ∼1-2% top-1 accuracy on ImageNet-1k), while maintaining flops and runtime. The improvement can be observed across the wide spectrum of model complexities (from 1G to 36G flops) and dataset scales (from ImageNet-1k to ImageNet-21k). These findings lead us to recommend using a standard, lightweight convolutional stem for ViT models in this regime as a more robust architectural choice compared to the original ViT model design.
translated by 谷歌翻译
视觉变压器(VIT)在各种机器视觉问题上表现出令人印象深刻的性能。这些模型基于多头自我关注机制,可以灵活地参加一系列图像修补程序以编码上下文提示。一个重要问题是在给定贴片上参加图像范围内的上下文的这种灵活性是如何促进在自然图像中处理滋扰,例如,严重的闭塞,域移位,空间置换,对抗和天然扰动。我们通过广泛的一组实验来系统地研究了这个问题,包括三个vit家族和具有高性能卷积神经网络(CNN)的比较。我们展示和分析了vit的以下迷恋性质:(a)变压器对严重闭塞,扰动和域移位高度稳健,例如,即使在随机堵塞80%的图像之后,也可以在想象中保持高达60%的前1个精度。内容。 (b)与局部纹理的偏置有抗闭锁的强大性能,与CNN相比,VITS对纹理的偏置显着偏差。当受到适当训练以编码基于形状的特征时,VITS展示与人类视觉系统相当的形状识别能力,以前在文献中无与伦比。 (c)使用VIT来编码形状表示导致准确的语义分割而没有像素级监控的有趣后果。 (d)可以组合从单VIT模型的现成功能,以创建一个功能集合,导致传统和几枪学习范例的一系列分类数据集中的高精度率。我们显示VIT的有效特征是由于自我关注机制可以实现灵活和动态的接受领域。
translated by 谷歌翻译
本文研究了从预先训练的模型,尤其是蒙面自动编码器中提取知识的潜力。我们的方法很简单:除了优化掩盖输入的像素重建损失外,我们还将教师模型的中间特征图与学生模型的中间特征图之间的距离最小化。此设计导致一个计算高效的知识蒸馏框架,给定1)仅使用一个少量可见的补丁子集,2)(笨拙的)教师模型仅需要部分执行,\ ie,\ ie,在前几个中,向前传播输入层,用于获得中间特征图。与直接蒸馏微型模型相比,提炼预训练的模型显着改善了下游性能。例如,通过将知识从MAE预先训练的VIT-L提炼为VIT-B,我们的方法可实现84.0%的Imagenet Top-1精度,表现优于直接将微型VIT-L蒸馏的基线,降低1.2%。更有趣的是,我们的方法即使具有极高的掩盖率也可以从教师模型中进行鲁棒性蒸馏:例如,在蒸馏过程中仅可见十个斑块,我们的VIT-B具有竞争力的前1个Imagenet精度为83.6%,在95%的掩盖率中,只有十个斑块。 ;令人惊讶的是,它仍然可以通过仅四个可见斑(98%的掩盖率)积极训练来确保82.4%的Top-1 Imagenet精度。代码和模型可在https://github.com/ucsc-vlaa/dmae上公开获得。
translated by 谷歌翻译