视觉变形金刚最近的成功是在图像识别中挥舞着卷积神经网络(CNN)的长期优势。具体而言,就稳健性而言,最近的研究发现,无论训练设置如何,变压器本质上比CNN更强大。此外,人们认为,变形金刚的这种优越性应该在很大程度上被认为是他们的自我注意力型建筑本身。在本文中,我们通过密切研究变压器的设计来质疑这种信念。我们的发现导致了三种高效的体系结构设计,以提高鲁棒性,但很简单,可以在几行代码中实现,即a)修补输入图像,b)扩大内核大小,c)降低激活层和归一化层。将这些组件融合在一起,我们能够构建纯CNN体系结构,而没有任何类似注意力的操作,这些操作比变形金刚更强大,甚至更健壮。我们希望这项工作可以帮助社区更好地了解强大的神经体系结构的设计。该代码可在https://github.com/ucsc-vlaa/robustcnn上公开获得。
translated by 谷歌翻译
变压器出现为可视识别的强大工具。除了在广泛的视觉基准上展示竞争性能外,最近的作品还争辩说,变形金刚比卷曲神经网络(CNNS)更强大。令人惊讶的是,我们发现这些结论是从不公平的实验设置中得出的,其中变压器和CNN在不同的尺度上比较,并用不同的训练框架应用。在本文中,我们的目标是在变压器和CNN之间提供第一个公平和深入的比较,重点是鲁棒性评估。通过我们的统一培训设置,我们首先挑战以前的信念,使得在衡量对抗性鲁棒性时越来越多的CNN。更令人惊讶的是,如果他们合理地采用变形金刚的培训食谱,我们发现CNNS可以很容易地作为捍卫对抗性攻击的变形金刚。在关于推广样本的泛化的同时,我们显示了对(外部)大规模数据集的预训练不是对实现变压器来实现比CNN更好的性能的根本请求。此外,我们的消融表明,这种更强大的概括主要受到变压器的自我关注架构本身的影响,而不是通过其他培训设置。我们希望这项工作可以帮助社区更好地理解和基准变压器和CNN的鲁棒性。代码和模型在https://github.com/ytongbai/vits-vs-cnns上公开使用。
translated by 谷歌翻译
Vision Transformer (ViT) extends the application range of transformers from language processing to computer vision tasks as being an alternative architecture against the existing convolutional neural networks (CNN). Since the transformer-based architecture has been innovative for computer vision modeling, the design convention towards an effective architecture has been less studied yet. From the successful design principles of CNN, we investigate the role of spatial dimension conversion and its effectiveness on transformer-based architecture. We particularly attend to the dimension reduction principle of CNNs; as the depth increases, a conventional CNN increases channel dimension and decreases spatial dimensions. We empirically show that such a spatial dimension reduction is beneficial to a transformer architecture as well, and propose a novel Pooling-based Vision Transformer (PiT) upon the original ViT model. We show that PiT achieves the improved model capability and generalization performance against ViT. Throughout the extensive experiments, we further show PiT outperforms the baseline on several tasks such as image classification, object detection, and robustness evaluation. Source codes and ImageNet models are available at https://github.com/naver-ai/pit.
translated by 谷歌翻译
We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (i.e. shift, scale, and distortion invariance) while maintaining the merits of Transformers (i.e. dynamic attention, global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition, performance gains are maintained when pretrained on larger datasets (e.g. ImageNet-22k) and fine-tuned to downstream tasks. Pretrained on ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7% on the ImageNet-1k val set. Finally, our results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks. Code will be released at https: //github.com/leoxiaobin/CvT.
translated by 谷歌翻译
视觉识别的“咆哮20S”开始引入视觉变压器(VITS),这将被取代的Cummnets作为最先进的图像分类模型。另一方面,vanilla vit,当应用于一般计算机视觉任务等对象检测和语义分割时面临困难。它是重新引入多个ConvNet Priors的等级变压器(例如,Swin变压器),使变压器实际上可作为通用视觉骨干网,并在各种视觉任务上展示了显着性能。然而,这种混合方法的有效性仍然在很大程度上归功于变压器的内在优越性,而不是卷积的固有感应偏差。在这项工作中,我们重新审视设计空间并测试纯粹的Convnet可以实现的限制。我们逐渐“现代化”标准Reset朝着视觉变压器的设计设计,并发现几个有助于沿途绩效差异的关键组件。此探索的结果是一个纯粹的ConvNet型号被称为ConvNext。完全由标准的Convnet模块构建,ConvNexts在准确性和可扩展性方面与变压器竞争,实现了87.8%的ImageNet Top-1精度和表现优于COCO检测和ADE20K分割的Swin变压器,同时保持了标准Convnet的简单性和效率。
translated by 谷歌翻译
过去一年目睹了将变压器模块应用于视力问题的快速发展。虽然一些研究人员已经证明,基于变压器的模型享有有利的拟合数据能力,但仍然越来越多的证据,表明这些模型尤其在训练数据受到限制时遭受过度拟合。本文通过执行逐步操作来提供实证研究,逐步运输基于变压器的模型到基于卷积的模型。我们在过渡过程中获得的结果为改善视觉识别提供了有用的消息。基于这些观察,我们提出了一个名为VIRFormer的新架构,该体系结构从“视觉友好的变压器”中缩写。具有相同的计算复杂度,在想象集分类精度方面,VISFormer占据了基于变压器的基于卷积的模型,并且当模型复杂性较低或训练集较小时,优势变得更加重要。代码可在https://github.com/danczs/visformer中找到。
translated by 谷歌翻译
卷积神经网络(CNN)是用于计算机视觉的主要的深神经网络(DNN)架构。最近,变压器和多层的Perceptron(MLP)的基础型号,如视觉变压器和MLP-MILER,开始引领新的趋势,因为它们在想象成分类任务中显示出了有希望的结果。在本文中,我们对这些DNN结构进行了实证研究,并试图了解他们各自的利弊。为了确保公平的比较,我们首先开发一个名为SPACH的统一框架,可以采用单独的空间和通道处理模块。我们在SPACH框架下的实验表明,所有结构都可以以适度的规模实现竞争性能。但是,当网络大小缩放时,它们展示了独特的行为。根据我们的调查结果,我们建议使用卷积和变压器模块的混合模型。由此产生的Hybrid-MS-S +模型实现了83.9%的前1个精度,63米参数和12.3g拖薄。它已与具有复杂设计的SOTA模型相提并论。代码和模型在https://github.com/microsoft/spach上公开使用。
translated by 谷歌翻译
Vision transformer (ViT) models exhibit substandard optimizability. In particular, they are sensitive to the choice of optimizer (AdamW vs. SGD), optimizer hyperparameters, and training schedule length. In comparison, modern convolutional neural networks are easier to optimize. Why is this the case? In this work, we conjecture that the issue lies with the patchify stem of ViT models, which is implemented by a stride-p p×p convolution (p = 16 by default) applied to the input image. This large-kernel plus large-stride convolution runs counter to typical design choices of convolutional layers in neural networks. To test whether this atypical design choice causes an issue, we analyze the optimization behavior of ViT models with their original patchify stem versus a simple counterpart where we replace the ViT stem by a small number of stacked stride-two 3×3 convolutions. While the vast majority of computation in the two ViT designs is identical, we find that this small change in early visual processing results in markedly different training behavior in terms of the sensitivity to optimization settings as well as the final model accuracy. Using a convolutional stem in ViT dramatically increases optimization stability and also improves peak performance (by ∼1-2% top-1 accuracy on ImageNet-1k), while maintaining flops and runtime. The improvement can be observed across the wide spectrum of model complexities (from 1G to 36G flops) and dataset scales (from ImageNet-1k to ImageNet-21k). These findings lead us to recommend using a standard, lightweight convolutional stem for ViT models in this regime as a more robust architectural choice compared to the original ViT model design.
translated by 谷歌翻译
视觉变压器(VIT)显示了计算机视觉任务的快速进步,在各种基准上取得了令人鼓舞的结果。但是,由于参数和模型设计的数量大量,例如注意机制,基于VIT的模型通常比轻型卷积网络慢。因此,为实时应用程序部署VIT特别具有挑战性,尤其是在资源受限的硬件(例如移动设备)上。最近的努力试图通过网络体系结构搜索或与Mobilenet块的混合设计来降低VIT的计算复杂性,但推理速度仍然不令人满意。这导致了一个重要的问题:变形金刚在获得高性能的同时可以像Mobilenet一样快吗?为了回答这一点,我们首先重新审视基于VIT的模型中使用的网络体系结构和运营商,并确定效率低下的设计。然后,我们引入了一个尺寸一致的纯变压器(无需Mobilenet块)作为设计范式。最后,我们执行以延迟驱动的缩小,以获取一系列称为EfficityFormer的最终模型。广泛的实验表明,在移动设备上的性能和速度方面,有效形式的优势。我们最快的型号,EfficientFormer-L1,在ImagEnet-1k上获得$ 79.2 \%$ $ TOP-1的准确性,仅$ 1.6 $ MS推理潜伏期在iPhone 12上(与Coreml一起编译),该{运行速度与MobileNetV2 $ \ Times Times 1.4 $( $ 1.6 $ MS,$ 74.7 \%$ top-1),我们最大的型号EfficientFormer-L7,获得了$ 83.3 \%$精度,仅$ 7.0 $ MS延迟。我们的工作证明,正确设计的变压器可以在移动设备上达到极低的延迟,同时保持高性能。
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
Vision Transformers have shown great promise recently for many vision tasks due to the insightful architecture design and attention mechanism. By revisiting the self-attention responses in Transformers, we empirically observe two interesting issues. First, Vision Transformers present a queryirrelevant behavior at deep layers, where the attention maps exhibit nearly consistent contexts in global scope, regardless of the query patch position (also head-irrelevant). Second, the attention maps are intrinsically sparse, few tokens dominate the attention weights; introducing the knowledge from ConvNets would largely smooth the attention and enhance the performance. Motivated by above observations, we generalize self-attention formulation to abstract a queryirrelevant global context directly and further integrate the global context into convolutions. The resulting model, a Fully Convolutional Vision Transformer (i.e., FCViT), purely consists of convolutional layers and firmly inherits the merits of both attention mechanism and convolutions, including dynamic property, weight sharing, and short- and long-range feature modeling, etc. Experimental results demonstrate the effectiveness of FCViT. With less than 14M parameters, our FCViT-S12 outperforms related work ResT-Lite by 3.7% top1 accuracy on ImageNet-1K. When scaling FCViT to larger models, we still perform better than previous state-of-the-art ConvNeXt with even fewer parameters. FCViT-based models also demonstrate promising transferability to downstream tasks, like object detection, instance segmentation, and semantic segmentation. Codes and models are made available at: https://github.com/ma-xu/FCViT.
translated by 谷歌翻译
探讨了语言建模流行的变形金刚,用于近期解决视觉任务,例如,用于图像分类的视觉变压器(VIT)。 VIT模型将每个图像分成具有固定长度的令牌序列,然后应用多个变压器层以模拟它们的全局关系以进行分类。然而,当从像想象中的中型数据集上从头开始训练时,VIT对CNNS达到较差的性能。我们发现它是因为:1)输入图像的简单标记未能模拟相邻像素之间的重要局部结构,例如边缘和线路,导致训练采样效率低。 2)冗余注意骨干骨干设计对固定计算预算和有限的训练样本有限的具有限制性。为了克服这些限制,我们提出了一种新的令牌到令牌视觉变压器(T2T-VIT),它包含1)层 - 明智的代币(T2T)转换,通过递归聚合相邻来逐步地结构于令牌到令牌。代币进入一个令牌(令牌到令牌),这样可以建模由周围令牌所代表的本地结构,并且可以减少令牌长度; 2)一种高效的骨干,具有深度狭窄的结构,用于在实证研究后CNN建筑设计的激励变压器结构。值得注意的是,T2T-VIT将Vanilla Vit的参数计数和Mac减少了一半,同时从想象中从头开始训练时,改善了超过3.0 \%。它还优于Endnets并通过直接培训Imagenet训练来实现与MobileNets相当的性能。例如,T2T-VTO与Reset50(21.5M参数)的可比大小(21.5M参数)可以在图像分辨率384 $ \ Times 384上实现83.3 \%TOP1精度。 (代码:https://github.com/yitu-opensource/t2t-vit)
translated by 谷歌翻译
Since the recent success of Vision Transformers (ViTs), explorations toward transformer-style architectures have triggered the resurgence of modern ConvNets. In this work, we explore the representation ability of DNNs through the lens of interaction complexities. We empirically show that interaction complexity is an overlooked but essential indicator for visual recognition. Accordingly, a new family of efficient ConvNets, named MogaNet, is presented to pursue informative context mining in pure ConvNet-based models, with preferable complexity-performance trade-offs. In MogaNet, interactions across multiple complexities are facilitated and contextualized by leveraging two specially designed aggregation blocks in both spatial and channel interaction spaces. Extensive studies are conducted on ImageNet classification, COCO object detection, and ADE20K semantic segmentation tasks. The results demonstrate that our MogaNet establishes new state-of-the-art over other popular methods in mainstream scenarios and all model scales. Typically, the lightweight MogaNet-T achieves 80.0\% top-1 accuracy with only 1.44G FLOPs using a refined training setup on ImageNet-1K, surpassing ParC-Net-S by 1.4\% accuracy but saving 59\% (2.04G) FLOPs.
translated by 谷歌翻译
视觉变压器(VITS)已成为各种视觉任务的流行结构和优于卷积神经网络(CNNS)。然而,这种强大的变形金机带来了巨大的计算负担。而这背后的基本障碍是排气的令牌到令牌比较。为了缓解这一点,我们深入研究Vit的模型属性,观察到VITS表现出稀疏关注,具有高令牌相似性。这直观地向我们介绍了可行的结构不可知的尺寸,令牌编号,以降低计算成本。基于这一探索,我们为香草vits提出了一种通用的自我切片学习方法,即坐下。具体而言,我们首先设计一种新颖的令牌减肥模块(TSM),可以通过动态令牌聚集来提高VIT的推理效率。不同于令牌硬滴,我们的TSM轻轻地集成了冗余令牌变成了更少的信息,可以在不切断图像中的鉴别性令牌关系的情况下动态缩放视觉注意。此外,我们介绍了一种简洁的密集知识蒸馏(DKD)框架,其密集地以柔性自动编码器方式传送无组织的令牌信息。由于教师和学生之间的结构类似,我们的框架可以有效地利用结构知识以获得更好的收敛性。最后,我们进行了广泛的实验来评估我们的坐姿。它展示了我们的方法可以通过1.7倍加速VITS,其精度下降可忽略不计,甚至在3.6倍上加速VITS,同时保持其性能的97%。令人惊讶的是,通过简单地武装LV-VIT与我们的坐线,我们在想象中实现了新的最先进的表现,超过了最近文学中的所有CNN和VITS。
translated by 谷歌翻译
由于复杂的注意机制和模型设计,大多数现有的视觉变压器(VIT)无法在现实的工业部署方案中的卷积神经网络(CNN)高效,例如张力和coreml。这提出了一个独特的挑战:可以设计视觉神经网络以与CNN一样快地推断并表现强大吗?最近的作品试图设计CNN-Transformer混合体系结构来解决这个问题,但是这些作品的整体性能远非令人满意。为了结束这些结束,我们提出了下一代视觉变压器,以在现实的工业场景中有效部署,即下一步,从延迟/准确性权衡的角度来看,它在CNN和VIT上占主导地位。在这项工作中,下一个卷积块(NCB)和下一个变压器块(NTB)分别开发出用于使用部署友好机制捕获本地和全球信息。然后,下一个混合策略(NHS)旨在将NCB和NTB堆叠在有效的混合范式中,从而提高了各种下游任务中的性能。广泛的实验表明,在各种视觉任务方面的延迟/准确性权衡方面,下一个VIT明显优于现有的CNN,VIT和CNN转换混合体系结构。在Tensorrt上,在可可检测上,Next-Vit超过5.4 MAP(从40.4到45.8),在类似延迟下,ADE20K细分的8.2%MIOU(从38.8%到47.0%)。同时,它可以与CSWIN达到可比的性能,而推理速度则以3.6倍的速度加速。在COREML上,在类似的延迟下,在COCO检测上,下一步超过了可可检测的4.6 MAP(从42.6到47.2),ADE20K分割的3.5%MIOU(从45.2%到48.7%)。代码将最近发布。
translated by 谷歌翻译
We design a family of image classification architectures that optimize the trade-off between accuracy and efficiency in a high-speed regime. Our work exploits recent findings in attention-based architectures, which are competitive on highly parallel processing hardware. We revisit principles from the extensive literature on convolutional neural networks to apply them to transformers, in particular activation maps with decreasing resolutions. We also introduce the attention bias, a new way to integrate positional information in vision transformers.As a result, we propose LeVIT: a hybrid neural network for fast inference image classification. We consider different measures of efficiency on different hardware platforms, so as to best reflect a wide range of application scenarios. Our extensive experiments empirically validate our technical choices and show they are suitable to most architectures. Overall, LeViT significantly outperforms existing convnets and vision transformers with respect to the speed/accuracy tradeoff. For example, at 80% ImageNet top-1 accuracy, LeViT is 5 times faster than EfficientNet on CPU. We release the code at https: //github.com/facebookresearch/LeViT.
translated by 谷歌翻译
视觉变压器(VIT)最近在一系列计算机视觉任务中占据了主导地位,但训练数据效率低下,局部语义表示能力较低,而没有适当的电感偏差。卷积神经网络(CNNS)固有地捕获了区域感知语义,激发了研究人员将CNN引入VIT的架构中,以为VIT提供理想的诱导偏见。但是,嵌入在VIT中的微型CNN实现的位置是否足够好?在本文中,我们通过深入探讨混合CNNS/VIT的宏观结构如何增强层次VIT的性能。特别是,我们研究了令牌嵌入层,别名卷积嵌入(CE)的作用,并系统地揭示了CE如何在VIT中注入理想的感应偏置。此外,我们将最佳CE配置应用于最近发布的4个最先进的Vits,从而有效地增强了相应的性能。最后,释放了一个有效的混合CNN/VIT家族,称为CETNET,可以用作通用的视觉骨架。具体而言,CETNET在Imagenet-1K上获得了84.9%的TOP-1准确性(从头开始训练),可可基准上的48.6%的盒子地图和ADE20K上的51.6%MIOU,从而显着提高了相应的最新态度的性能。艺术基线。
translated by 谷歌翻译
随着变压器作为语言处理的标准及其在计算机视觉方面的进步,参数大小和培训数据的数量相应地增长。许多人开始相信,因此,变形金刚不适合少量数据。这种趋势引起了人们的关注,例如:某些科学领域中数据的可用性有限,并且排除了该领域研究资源有限的人。在本文中,我们旨在通过引入紧凑型变压器来提出一种小规模学习的方法。我们首次表明,具有正确的尺寸,卷积令牌化,变压器可以避免在小数据集上过度拟合和优于最先进的CNN。我们的模型在模型大小方面具有灵活性,并且在获得竞争成果的同时,参数可能仅为0.28亿。当在CIFAR-10上训练Cifar-10,只有370万参数训练时,我们的最佳模型可以达到98%的准确性,这是与以前的基于变形金刚的模型相比,数据效率的显着提高,比其他变压器小于10倍,并且是15%的大小。在实现类似性能的同时,重新NET50。 CCT还表现优于许多基于CNN的现代方法,甚至超过一些基于NAS的方法。此外,我们在Flowers-102上获得了新的SOTA,具有99.76%的TOP-1准确性,并改善了Imagenet上现有基线(82.71%精度,具有29%的VIT参数)以及NLP任务。我们针对变压器的简单而紧凑的设计使它们更可行,可以为那些计算资源和/或处理小型数据集的人学习,同时扩展了在数据高效变压器中的现有研究工作。我们的代码和预培训模型可在https://github.com/shi-labs/compact-transformers上公开获得。
translated by 谷歌翻译
最近,变压器和多层感知器(MLP)体系结构在各种视觉任务上取得了令人印象深刻的结果。但是,如何有效地结合这些操作员形成高性能混合视觉体系结构仍然是一个挑战。在这项工作中,我们通过提出一种新型的统一体系结构搜索方法来研究卷积,变压器和MLP的可学习组合。我们的方法包含两个关键设计,以实现高性能网络的搜索。首先,我们以统一的形式对截然不同的可搜索运算符进行建模,从而使操作员能够用相同的配置参数进行表征。这样,总体搜索空间规模大大减少,总搜索成本变得负担得起。其次,我们提出上下文感知的倒数采样模块(DSM),以减轻不同类型的操作员之间的差距。我们提出的DSM能够更好地适应不同类型的操作员的功能,这对于识别高性能混合体系结构很重要。最后,我们将可配置的运算符和DSM集成到统一的搜索空间中,并使用基于增强学习的搜索算法进行搜索,以充分探索操作员的最佳组合。为此,我们搜索一个基线网络并扩大规模,以获得一个名为UNINET的模型系列,该模型的准确性和效率比以前的Convnets和Transformers更好。特别是,我们的UNET-B5在ImageNet上获得了84.9%的TOP-1精度,比效应网络-B7和Botnet-T7分别少了44%和55%。通过在Imagenet-21K上进行预处理,我们的UNET-B6获得了87.4%,表现优于SWIN-L,拖鞋少51%,参数减少了41%。代码可在https://github.com/sense-x/uninet上找到。
translated by 谷歌翻译
Transformers have attracted increasing interests in computer vision, but they still fall behind state-of-the-art convolutional networks. In this work, we show that while Transformers tend to have larger model capacity, their generalization can be worse than convolutional networks due to the lack of the right inductive bias. To effectively combine the strengths from both architectures, we present CoAtNets (pronounced "coat" nets), a family of hybrid models built from two key insights:(1) depthwise Convolution and self-Attention can be naturally unified via simple relative attention; (2) vertically stacking convolution layers and attention layers in a principled way is surprisingly effective in improving generalization, capacity and efficiency. Experiments show that our CoAtNets achieve state-of-the-art performance under different resource constraints across various datasets: Without extra data, CoAtNet achieves 86.0% ImageNet top-1 accuracy; When pre-trained with 13M images from ImageNet-21K, our CoAtNet achieves 88.56% top-1 accuracy, matching ViT-huge pre-trained with 300M images from JFT-300M while using 23x less data; Notably, when we further scale up CoAtNet with JFT-3B, it achieves 90.88% top-1 accuracy on ImageNet, establishing a new state-of-the-art result.1 The initial projection stage can be seen as an aggressive down-sampling convolutional stem.
translated by 谷歌翻译