通过回顾他们之前看到的类似未腐败的图像,人类的注意力可以直观地适应图像的损坏区域。这种观察结果激发了我们通过考虑清洁的对应物来提高对抗性图像的注意。为了实现这一目标,我们将联想的对抗性学习(aal)介绍进入对抗的学习,以指导选择性攻击。我们为引人注目和攻击(扰动)之间的内在关系作为提高其互动的耦合优化问题。这导致注意反向触发算法,可以有效提高注意力的对抗鲁棒性。我们的方法是通用的,可用于通过简单选择不同的核来解决各种任务,以便为特定攻击选择其他区域的关联注意。实验结果表明,选择性攻击提高了模型的性能。我们表明,与基线相比,我们的方法提高了8.32%对想象成的识别准确性。它还将Pascalvoc的物体检测图提高了2.02%,并在MiniimAgenet上的几次学习识别准确性为1.63%。
translated by 谷歌翻译
对抗性训练(AT)已被证明可以通过利用对抗性示例进行训练来有效地改善模型鲁棒性。但是,大多数方法面对昂贵的时间和计算成本,用于在生成对抗性示例的多个步骤中计算梯度。为了提高训练效率,快速梯度符号方法(FGSM)在方法中仅通过计算一次来快速地采用。不幸的是,鲁棒性远非令人满意。初始化的方式可能引起一个原因。现有的快速在通常使用随机的样本不合时宜的初始化,这促进了效率,但会阻碍进一步的稳健性改善。到目前为止,快速AT中的初始化仍未广泛探索。在本文中,我们以样本依赖性的对抗初始化(即,来自良性图像条件的生成网络的输出及其来自目标网络的梯度信息的输出)快速增强。随着生成网络和目标网络在训练阶段共同优化,前者可以适应相对于后者的有效初始化,从而激发了逐渐改善鲁棒性。在四个基准数据库上进行的实验评估证明了我们所提出的方法比在方法上快速的最先进方法的优越性,以及与方法相当的鲁棒性。该代码在https://github.com//jiaxiaojunqaq//fgsm-sdi上发布。
translated by 谷歌翻译
Deep hashing has been extensively utilized in massive image retrieval because of its efficiency and effectiveness. However, deep hashing models are vulnerable to adversarial examples, making it essential to develop adversarial defense methods for image retrieval. Existing solutions achieved limited defense performance because of using weak adversarial samples for training and lacking discriminative optimization objectives to learn robust features. In this paper, we present a min-max based Center-guided Adversarial Training, namely CgAT, to improve the robustness of deep hashing networks through worst adversarial examples. Specifically, we first formulate the center code as a semantically-discriminative representative of the input image content, which preserves the semantic similarity with positive samples and dissimilarity with negative examples. We prove that a mathematical formula can calculate the center code immediately. After obtaining the center codes in each optimization iteration of the deep hashing network, they are adopted to guide the adversarial training process. On the one hand, CgAT generates the worst adversarial examples as augmented data by maximizing the Hamming distance between the hash codes of the adversarial examples and the center codes. On the other hand, CgAT learns to mitigate the effects of adversarial samples by minimizing the Hamming distance to the center codes. Extensive experiments on the benchmark datasets demonstrate the effectiveness of our adversarial training algorithm in defending against adversarial attacks for deep hashing-based retrieval. Compared with the current state-of-the-art defense method, we significantly improve the defense performance by an average of 18.61%, 12.35%, and 11.56% on FLICKR-25K, NUS-WIDE, and MS-COCO, respectively.
translated by 谷歌翻译
视觉检测是自动驾驶的关键任务,它是自动驾驶计划和控制的关键基础。深度神经网络在各种视觉任务中取得了令人鼓舞的结果,但众所周知,它们容易受到对抗性攻击的影响。在人们改善其稳健性之前,需要对深层视觉探测器的脆弱性进行全面的了解。但是,只有少数对抗性攻击/防御工程集中在对象检测上,其中大多数仅采用分类和/或本地化损失,而忽略了目的方面。在本文中,我们确定了Yolo探测器中与物体相关的严重相关对抗性脆弱性,并提出了针对自动驾驶汽车视觉检测物质方面的有效攻击策略。此外,为了解决这种脆弱性,我们提出了一种新的客观性训练方法,以进行视觉检测。实验表明,针对目标方面的拟议攻击比分别在KITTI和COCO流量数据集中分类和/或本地化损失产生的攻击效率高45.17%和43.50%。此外,拟议的对抗防御方法可以分别在Kitti和Coco交通方面提高检测器对目标攻击的鲁棒性高达21%和12%的地图。
translated by 谷歌翻译
Robust Model-Agnostic Meta-Learning (MAML) is usually adopted to train a meta-model which may fast adapt to novel classes with only a few exemplars and meanwhile remain robust to adversarial attacks. The conventional solution for robust MAML is to introduce robustness-promoting regularization during meta-training stage. With such a regularization, previous robust MAML methods simply follow the typical MAML practice that the number of training shots should match with the number of test shots to achieve an optimal adaptation performance. However, although the robustness can be largely improved, previous methods sacrifice clean accuracy a lot. In this paper, we observe that introducing robustness-promoting regularization into MAML reduces the intrinsic dimension of clean sample features, which results in a lower capacity of clean representations. This may explain why the clean accuracy of previous robust MAML methods drops severely. Based on this observation, we propose a simple strategy, i.e., increasing the number of training shots, to mitigate the loss of intrinsic dimension caused by robustness-promoting regularization. Though simple, our method remarkably improves the clean accuracy of MAML without much loss of robustness, producing a robust yet accurate model. Extensive experiments demonstrate that our method outperforms prior arts in achieving a better trade-off between accuracy and robustness. Besides, we observe that our method is less sensitive to the number of fine-tuning steps during meta-training, which allows for a reduced number of fine-tuning steps to improve training efficiency.
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
深度神经网络的图像分类容易受到对抗性扰动的影响。图像分类可以通过在输入图像中添加人造小且不可察觉的扰动来轻松愚弄。作为最有效的防御策略之一,提出了对抗性训练,以解决分类模型的脆弱性,其中创建了对抗性示例并在培训期间注入培训数据中。在过去的几年中,对分类模型的攻击和防御进行了深入研究。语义细分作为分类的扩展,最近也受到了极大的关注。最近的工作表明,需要大量的攻击迭代来创建有效的对抗性示例来欺骗分割模型。该观察结果既可以使鲁棒性评估和对分割模型的对抗性培训具有挑战性。在这项工作中,我们提出了一种称为SEGPGD的有效有效的分割攻击方法。此外,我们提供了收敛分析,以表明在相同数量的攻击迭代下,提出的SEGPGD可以创建比PGD更有效的对抗示例。此外,我们建议将SEGPGD应用于分割对抗训练的基础攻击方法。由于SEGPGD可以创建更有效的对抗性示例,因此使用SEGPGD的对抗训练可以提高分割模型的鲁棒性。我们的建议还通过对流行分割模型体系结构和标准分段数据集进行了验证。
translated by 谷歌翻译
有必要提高某些特殊班级的表现,或者特别保护它们免受对抗学习的攻击。本文提出了一个将成本敏感分类和对抗性学习结合在一起的框架,以训练可以区分受保护和未受保护的类的模型,以使受保护的类别不太容易受到对抗性示例的影响。在此框架中,我们发现在训练深神经网络(称为Min-Max属性)期间,一个有趣的现象,即卷积层中大多数参数的绝对值。基于这种最小的最大属性,该属性是在随机分布的角度制定和分析的,我们进一步建立了一个针对对抗性示例的新防御模型,以改善对抗性鲁棒性。构建模型的一个优点是,它的性能比标准模型更好,并且可以与对抗性训练相结合,以提高性能。在实验上证实,对于所有类别的平均准确性,我们的模型在没有发生攻击时几乎与现有模型一样,并且在发生攻击时比现有模型更好。具体而言,关于受保护类的准确性,提议的模型比发生攻击时的现有模型要好得多。
translated by 谷歌翻译
对抗性的例子揭示了神经网络的脆弱性和不明原因的性质。研究对抗性实例的辩护具有相当大的实际重要性。大多数逆势的例子,错误分类网络通常无法被人类不可检测。在本文中,我们提出了一种防御模型,将分类器培训成具有形状偏好的人类感知分类模型。包括纹理传输网络(TTN)和辅助防御生成的对冲网络(GAN)的所提出的模型被称为人类感知辅助防御GaN(had-GaN)。 TTN用于扩展清洁图像的纹理样本,并有助于分类器聚焦在其形状上。 GaN用于为模型形成培训框架并生成必要的图像。在MNIST,时尚 - MNIST和CIFAR10上进行的一系列实验表明,所提出的模型优于网络鲁棒性的最先进的防御方法。该模型还证明了对抗性实例的防御能力的显着改善。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
人类可以不断学习新知识。但是,在学习新任务后,机器学习模型在以前的任务上的性能急剧下降。认知科学指出,类似知识的竞争是遗忘的重要原因。在本文中,我们根据大脑的元学习和关联机制设计了一个用于终身学习的范式。它从两个方面解决了问题:提取知识和记忆知识。首先,我们通过背景攻击破坏样本的背景分布,从而增强了模型以提取每个任务的关键特征。其次,根据增量知识和基础知识之间的相似性,我们设计了增量知识的自适应融合,这有助于模型将能力分配到不同困难的知识。理论上分析了所提出的学习范式可以使不同任务的模型收敛到相同的最优值。提出的方法已在MNIST,CIFAR100,CUB200和ImagEnet100数据集上进行了验证。
translated by 谷歌翻译
作为一项基本的计算机视觉任务,对象检测在深度神经网络的出现中取得了显着的进步。然而,很少有作品探索对象探测器的对抗性鲁棒性,以抵制在各种现实世界中实用应用的对抗性攻击。探测器受到了不明显的扰动的挑战,在干净的图像上的性能下降,并且在对抗图像上的性能极差。在这项工作中,我们从经验上探索了对象检测中对抗性鲁棒性的模型培训,这极大地归因于学习清洁图像和对抗图像之间的冲突。为了减轻此问题,我们提出了一个基于对抗感知的卷积的稳健检测器(鲁棒),以解开对清洁和对抗性图像的模型学习的梯度。 RubustDet还采用了对抗图像判别器(AID)和重建(CFR)的一致特征,以确保可靠的鲁棒性。对Pascal VOC和MS-Coco的广泛实验表明,我们的模型有效地脱离了梯度,并显着增强了检测鲁棒性,从而保持了清洁图像上的检测能力。
translated by 谷歌翻译
深度神经网络(DNNS)最近在许多分类任务中取得了巨大的成功。不幸的是,它们容易受到对抗性攻击的影响,这些攻击会产生对抗性示例,这些示例具有很小的扰动,以欺骗DNN模型,尤其是在模型共享方案中。事实证明,对抗性训练是最有效的策略,它将对抗性示例注入模型训练中,以提高DNN模型的稳健性,以对对抗性攻击。但是,基于现有的对抗性示例的对抗训练无法很好地推广到标准,不受干扰的测试数据。为了在标准准确性和对抗性鲁棒性之间取得更好的权衡,我们提出了一个新型的对抗训练框架,称为潜在边界引导的对抗训练(梯子),该训练(梯子)在潜在的边界引导的对抗性示例上对对手进行对手训练DNN模型。与大多数在输入空间中生成对抗示例的现有方法相反,梯子通过增加对潜在特征的扰动而产生了无数的高质量对抗示例。扰动是沿SVM构建的具有注意机制的决策边界的正常情况进行的。我们从边界场的角度和可视化视图分析了生成的边界引导的对抗示例的优点。与Vanilla DNN和竞争性底线相比,对MNIST,SVHN,CELEBA和CIFAR-10的广泛实验和详细分析验证了梯子在标准准确性和对抗性鲁棒性之间取得更好的权衡方面的有效性。
translated by 谷歌翻译
This study provides a new understanding of the adversarial attack problem by examining the correlation between adversarial attack and visual attention change. In particular, we observed that: (1) images with incomplete attention regions are more vulnerable to adversarial attacks; and (2) successful adversarial attacks lead to deviated and scattered attention map. Accordingly, an attention-based adversarial defense framework is designed to simultaneously rectify the attention map for prediction and preserve the attention area between adversarial and original images. The problem of adding iteratively attacked samples is also discussed in the context of visual attention change. We hope the attention-related data analysis and defense solution in this study will shed some light on the mechanism behind the adversarial attack and also facilitate future adversarial defense/attack model design.
translated by 谷歌翻译
对象检测在清洁数据集上取得了有希望的性能,但仍然探讨了如何在对抗性鲁棒性和清洁精度之间实现更好的权衡。对抗性培训是提高稳健性的主流方法,但大多数作品将牺牲清洁精度,以获得比标准训练的坚固性。在本文中,我们提出了统一的解耦特征对准(UDFA),一种新型微调范例,通过完全探索对象检测的自我知识蒸馏和对抗训练之间的组合来实现比现有方法更好的性能。我们首先使用分离的前/后地特征来构建自我知识蒸馏分支,从预磨牙探测器(作为教师)和来自学生探测器的对抗特征表示之间的清洁特征表示之间。然后我们通过将原始分支解耦为自我监督的学习分支和新的自我知识蒸馏分支来探索自我知识蒸馏。通过对Pascal-VOC和MS-Coco基准测试的广泛实验,评估结果表明,UDFA可以超越标准培训和最先进的对抗对象培训方法进行对象检测。例如,与教师探测器相比,我们在GFLV2与RESET-50的方法通过Pascal-Voc上的2.2 AP提高了干净精度;与SOTA对抗性培训方法相比,我们的方法通过1​​.6 AP改善了干净的精度,同时通过0.5 AP改善对抗性鲁棒性。我们的代码将在https://github.com/grispeut/udfa提供。
translated by 谷歌翻译
对手示例是一些可以扰乱深度神经网络的输出的一些特殊输入,以便在生产环境中产生有意的误差。用于产生对抗性示例的大多数方法需要梯度信息。甚至是与生成模型无关的普遍扰动依赖于梯度信息的一定程度。程序噪声对手示例是对普发的示例生成的一种新方法,它使用计算机图形噪声快速生成通用的对抗扰动,同时不依赖于梯度信息。结合对抗的防御训练,我们使用Perlin噪声训练神经网络以获得可以防御程序噪声对抗的模型。结合使用基于预先训练的模型的模型微调方法,我们获得更快的培训以及更高的准确性。我们的研究表明,程序噪声对抗性实例是可辩护的,但为什么程序噪声可以产生对抗性实例,以及如何防御可能在未来出现的其他过程噪声对抗性示例仍有待调查。
translated by 谷歌翻译
快速对抗训练(脂肪)有效地提高了标准对抗训练(SAT)的效率。然而,初始脂肪遇到灾难性的过度拟合,即,对抗性攻击的稳健精度突然并大大减少。尽管有几种脂肪变体毫不费力地防止过度拟合,但他们牺牲了很多计算成本。在本文中,我们探讨了SAT和FAT的训练过程之间的差异,并观察到,对抗性实例(AES)脂肪的攻击成功率在后期训练阶段逐渐变得更糟,从而导致过度拟合。 AE是通过零或随机初始化的快速梯度标志方法(FGSM)生成的。根据观察结果,我们提出了一种先前的FGSM初始化方法,以避免在研究多种初始化策略后避免过度适应,从而在整个训练过程中提高了AE的质量。初始化是通过利用历史上生成的AE而没有额外计算成本而形成的。我们进一步为提出的初始化方法提供了理论分析。我们还基于先前的初始化,即当前生成的扰动不应过多地偏离先前引导的初始化,因此我们还提出了一个简单而有效的正规化程序。正常化器同时采用历史和当前的对抗性扰动来指导模型学习。在四个数据集上进行的评估表明,所提出的方法可以防止灾难性过度拟合和优于最先进的脂肪方法。该代码在https://github.com/jiaxiaojunqaq/fgsm-pgi上发布。
translated by 谷歌翻译
涉及将知识从富含标签的源域传送到未标记的目标域的无监督域适应,可用于大大降低对象检测领域的注释成本。在这项研究中,我们证明了源域的对抗训练可以作为无监督域适应的新方法。具体地,我们建立了普遍训练的探测器在源极域中显着移位的目标域中实现了改进的检测性能。这种现象归因于普遍训练的探测器可用于提取与人类感知的鲁棒特征提取鲁棒特征,并在丢弃特定于域的非鲁棒特征的同时在域中传输域。此外,我们提出了一种结合对抗性训练和特征对准的方法,以确保具有目标域的鲁棒特征的改进对准。我们对四个基准数据集进行实验,并确认我们在大型域转移到艺术图像的大域移位的有效性。与基线模型相比,普遍训练的探测器在结合特征对准时将平均平均精度提高至7.7%,进一步高达11.8%。虽然我们的方法降低了对小型域移位的性能,但基于Frechet距离的域移位的量化允许我们确定是否应该进行抗逆性培训。
translated by 谷歌翻译
Pixel-wise prediction with deep neural network has become an effective paradigm for salient object detection (SOD) and achieved remarkable performance. However, very few SOD models are robust against adversarial attacks which are visually imperceptible for human visual attention. The previous work robust saliency (ROSA) shuffles the pre-segmented superpixels and then refines the coarse saliency map by the densely connected conditional random field (CRF). Different from ROSA that relies on various pre- and post-processings, this paper proposes a light-weight Learnable Noise (LeNo) to defend adversarial attacks for SOD models. LeNo preserves accuracy of SOD models on both adversarial and clean images, as well as inference speed. In general, LeNo consists of a simple shallow noise and noise estimation that embedded in the encoder and decoder of arbitrary SOD networks respectively. Inspired by the center prior of human visual attention mechanism, we initialize the shallow noise with a cross-shaped gaussian distribution for better defense against adversarial attacks. Instead of adding additional network components for post-processing, the proposed noise estimation modifies only one channel of the decoder. With the deeply-supervised noise-decoupled training on state-of-the-art RGB and RGB-D SOD networks, LeNo outperforms previous works not only on adversarial images but also on clean images, which contributes stronger robustness for SOD. Our code is available at https://github.com/ssecv/LeNo.
translated by 谷歌翻译
Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard adversarial training impractical on large-scale problems like ImageNet. We present an algorithm that eliminates the overhead cost of generating adversarial examples by recycling the gradient information computed when updating model parameters.Our "free" adversarial training algorithm achieves comparable robustness to PGD adversarial training on the CIFAR-10 and CIFAR-100 datasets at negligible additional cost compared to natural training, and can be 7 to 30 times faster than other strong adversarial training methods. Using a single workstation with 4 P100 GPUs and 2 days of runtime, we can train a robust model for the large-scale ImageNet classification task that maintains 40% accuracy against PGD attacks. The code is available at https://github.com/ashafahi/free_adv_train.
translated by 谷歌翻译