组成概括是学习和决策的关键能力。我们专注于在面向对象的环境中进行强化学习的设置,以研究世界建模中的组成概括。我们(1)通过代数方法正式化组成概括问题,(2)研究世界模型如何实现这一目标。我们介绍了一个概念环境,对象库和两个实例,并部署了一条原则的管道来衡量概括能力。通过公式的启发,我们使用我们的框架分析了几种具有精确或没有组成概括能力的方法,并设计了一种可区分的方法,同构对象的世界模型(HOWM),可以实现柔软但更有效的组成概括。
translated by 谷歌翻译
合并对称性可以通过定义通过转换相关的数据样本的等效类别来导致高度数据效率和可推广的模型。但是,表征转换如何在输入数据上作用通常很困难,从而限制了模型模型的适用性。我们提出了编码输入空间(例如图像)的学习对称嵌入网络(SENS),我们不知道转换的效果(例如旋转),以在这些操作下以已知方式转换的特征空间。可以通过模棱两可的任务网络端对端训练该网络,以学习明确的对称表示。我们在具有3种不同形式的对称形式的模棱两可的过渡模型的背景下验证了这种方法。我们的实验表明,SENS有助于将模棱两可的网络应用于具有复杂对称表示的数据。此外,相对于全等级和非等价基线的准确性和泛化可以提高准确性和概括。
translated by 谷歌翻译
我们研究小组对称性如何帮助提高端到端可区分计划算法的数据效率和概括,特别是在2D机器人路径计划问题上:导航和操纵。我们首先从价值迭代网络(VIN)正式使用卷积网络进行路径计划,因为它避免了明确构建等价类别并启用端到端计划。然后,我们证明价值迭代可以始终表示为(2D)路径计划的某种卷积形式,并将结果范式命名为对称范围(SYMPLAN)。在实施中,我们使用可进入的卷积网络来合并对称性。我们在导航和操纵方面的算法,具有给定或学习的地图,提高了与非等级同行VIN和GPPN相比,大幅度利润的训练效率和概括性能。
translated by 谷歌翻译
Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed representations that do not capture the compositional properties of natural scenes. In this paper, we present the Slot Attention module, an architectural component that interfaces with perceptual representations such as the output of a convolutional neural network and produces a set of task-dependent abstract representations which we call slots. These slots are exchangeable and can bind to any object in the input by specializing through a competitive procedure over multiple rounds of attention. We empirically demonstrate that Slot Attention can extract object-centric representations that enable generalization to unseen compositions when trained on unsupervised object discovery and supervised property prediction tasks.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
这篇综述解决了在深度强化学习(DRL)背景下学习测量数据的抽象表示的问题。尽管数据通常是模棱两可,高维且复杂的解释,但许多动态系统可以通过一组低维状态变量有效地描述。从数据中发现这些状态变量是提高数据效率,稳健性和DRL方法的概括,应对维度的诅咒以及将可解释性和见解带入Black-Box DRL的关键方面。这篇综述通过描述用于学习世界的学习代表的主要深度学习工具,提供对方法和原则的系统观点,总结应用程序,基准和评估策略,并讨论开放的方式,从而提供了DRL中无监督的代表性学习的全面概述,挑战和未来的方向。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
深度加强学习概括(RL)的研究旨在产生RL算法,其政策概括为在部署时间进行新的未经调整情况,避免对其培训环境的过度接受。如果我们要在现实世界的情景中部署强化学习算法,那么解决这一点至关重要,那么环境将多样化,动态和不可预测。该调查是这个新生领域的概述。我们为讨论不同的概括问题提供统一的形式主义和术语,在以前的作品上建立不同的概括问题。我们继续对现有的基准进行分类,以及用于解决泛化问题的当前方法。最后,我们提供了对现场当前状态的关键讨论,包括未来工作的建议。在其他结论之外,我们认为,采取纯粹的程序内容生成方法,基准设计不利于泛化的进展,我们建议快速在线适应和将RL特定问题解决作为未来泛化方法的一些领域,我们推荐在UniTexplorated问题设置中构建基准测试,例如离线RL泛化和奖励函数变化。
translated by 谷歌翻译
以对象为中心的表示是通过提供柔性抽象可以在可以建立的灵活性抽象来实现更系统的推广的有希望的途径。最近的简单2D和3D数据集的工作表明,具有对象的归纳偏差的模型可以学习段,并代表单独的数据的统计结构中的有意义对象,而无需任何监督。然而,尽管使用越来越复杂的感应偏差(例如,用于场景的尺寸或3D几何形状),但这种完全无监督的方法仍然无法扩展到不同的现实数据。在本文中,我们采取了弱监督的方法,并专注于如何使用光流的形式的视频数据的时间动态,2)调节在简单的对象位置上的模型可以用于启用分段和跟踪对象在明显更现实的合成数据中。我们介绍了一个顺序扩展,以便引入我们训练的推出,我们训练用于预测现实看的合成场景的光流,并显示调节该模型的初始状态在一小组提示,例如第一帧中的物体的质量中心,是足以显着改善实例分割。这些福利超出了新型对象,新颖背景和更长的视频序列的培训分配。我们还发现,在推论期间可以使用这种初始状态调节作为对特定物体或物体部分的型号查询模型,这可能会为一系列弱监管方法铺平,并允许更有效的互动训练有素的型号。
translated by 谷歌翻译
离线强化学习利用大型数据集来训练政策而无需与环境进行互动。然后,可以在互动昂贵或危险的现实世界中部署学习的策略。当前算法过于拟合到训练数据集,并且在部署到环境外的分发概括时,因此表现不佳。我们的目标是通过学习Koopman潜在代表来解决这些限制,这使我们能够推断系统的潜在动态的对称性。然后利用后者在训练期间扩展其他静态离线数据集;这构成了一种新颖的数据增强框架,其反映了系统的动态,因此要被解释为对环境空间的探索。为了获得对称,我们采用Koopman理论,其中根据用于系统的测量功能空间的线性操作员表示非线性动力学,因此可以直接推断动力学的对称性。我们为对对称性的对称性的存在和性质提供了新的理论结果,这些控制系统如加强学习设置。此外,我们对我们的方法进行了多种基准脱机强化学习任务和数据集,包括D4RL,MetaWorld和RoboSuite,并通过使用我们的框架来始终如一地改善Q学习方法的最先进。
translated by 谷歌翻译
Human perception is structured around objects which form the basis for our higher-level cognition and impressive systematic generalization abilities. Yet most work on representation learning focuses on feature learning without even considering multiple objects, or treats segmentation as an (often supervised) preprocessing step. Instead, we argue for the importance of learning to segment and represent objects jointly. We demonstrate that, starting from the simple assumption that a scene is composed of multiple entities, it is possible to learn to segment images into interpretable objects with disentangled representations. Our method learns -without supervision -to inpaint occluded parts, and extrapolates to scenes with more objects and to unseen objects with novel feature combinations. We also show that, due to the use of iterative variational inference, our system is able to learn multi-modal posteriors for ambiguous inputs and extends naturally to sequences.
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
大多数设置深度学习的预测模型,使用Set-Scifariant操作,但它们实际上在MultiSet上运行。我们表明设置的函数不能代表多种功能上的某些功能,因此我们介绍了更适当的多种式概念概念。我们确定现有的深度设置预测网络(DSPN)可以是多机构的,而不会被设定的标准规模阻碍,并通过近似隐式差分改进它,允许更好地优化,同时更快和节省存储器。在一系列玩具实验中,我们表明,多机构的角度是有益的,在大多数情况下,我们对DSPN的变化达到了更好的结果。关于CLEVR对象性质预测,由于通过隐含分化所取得的益处,我们在最先进的评估指标中从8%到77%的最先进的槽注意力从8%提高到77%。
translated by 谷歌翻译
一个沿着城市街道行走的人试图对世界各个方面进行建模,这很快就会被许多商店,汽车和人们遵循自己的复杂且难以理解的动态所淹没。在这种环境中的探索和导航是一项日常任务,不需要大量精神资源。是否可以将这种感官信息的消防软管转变为最小的潜在状态,这是代理在世界上成功采取行动的必要和足够的?我们具体地提出了这个问题,并提出了可控制的状态发现算法(AC-State),该算法具有理论保证,并且实际上被证明可以发现\ textit {最小可控的潜在状态},其中包含所有用于控制控制的信息代理,同时完全丢弃所有无关的信息。该算法由一个具有信息瓶颈的多步逆模型(预测遥远观察结果的动作)组成。 AC-State可以在没有奖励或示威的情况下实现本地化,探索和导航。我们证明了在三个领域中发现可控潜在状态的发现:将机器人组分散注意力(例如,照明条件和背景变化),与其他代理商一起在迷宫中进行探索,并在Matterport House Simulator中导航。
translated by 谷歌翻译
以对象表示的学习背后的想法是,自然场景可以更好地建模为对象的组成及其关系,而不是分布式表示形式。可以将这种归纳偏置注入神经网络中,以可能改善具有多个对象的场景中下游任务的系统概括和性能。在本文中,我们在五个常见的多对象数据集上训练最先进的无监督模型,并评估细分指标和下游对象属性预测。此外,我们通过调查单个对象不超出分布的设置(例如,具有看不见的颜色,质地或形状或场景的全局属性)来研究概括和鲁棒性,例如,通过闭塞来改变,裁剪或增加对象的数量。从我们的实验研究中,我们发现以对象为中心的表示对下游任务很有用,并且通常对影响对象的大多数分布转移有用。但是,当分布转移以较低结构化的方式影响输入时,在模型和分布转移的情况下,分割和下游任务性能的鲁棒性可能会有很大差异。
translated by 谷歌翻译
我们如何获得世界模型,这些模型在什么以及我们的行动如何影响它方面都在终止代表外界?我们可以通过与世界互动而获得此类模型,并且我们是否可以说明数学逃亡者与他们与脑海中存在的假设现实的关系?随着机器学习不仅朝着包含观察性的代表性,而且介入介入知识的趋势,我们使用代表学习和小组理论的工具研究了这些问题。在假设我们的执行者对世界上作用的假设,我们提出了学习的方法,不仅要学习感官信息的内部表示,而且还以与世界上的行动和过渡相一致的方式来修改我们的感觉表示的行为。我们使用配备有线性作用在其潜在空间上的组表示的自动编码器,该空间对2步重建进行了训练,例如在组表示上执行合适的同构属性。与现有工作相比,我们的方法对组表示的假设更少,并且代理可以从组中采样的转换。我们从理论上激励我们的方法,并从经验上证明它可以学习群体和环境拓扑的正确表示。我们还将其在轨迹预测中的性能与以前的方法进行比较。
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
学习涉及时变和不断发展的系统动态的控制政策通常对主流强化学习算法构成了巨大的挑战。在大多数标准方法中,通常认为动作是一组刚性的,固定的选择,这些选择以预定义的方式顺序应用于状态空间。因此,在不诉诸于重大学习过程的情况下,学识渊博的政策缺乏适应动作集和动作的“行为”结果的能力。此外,标准行动表示和动作引起的状态过渡机制固有地限制了如何将强化学习应用于复杂的现实世界应用中,这主要是由于所得大的状态空间的棘手性以及缺乏概括的学术知识对国家空间未知部分的政策。本文提出了一个贝叶斯味的广义增强学习框架,首先建立参数动作模型的概念,以更好地应对不确定性和流体动作行为,然后将增强领域的概念作为物理启发的结构引入通过“极化体验颗粒颗粒建立) “维持在学习代理的工作记忆中。这些粒子有效地编码了以自组织方式随时间演变的动态学习体验。在强化领域之上,我们将进一步概括策略学习过程,以通过将过去的记忆视为具有隐式图结构来结合高级决策概念,在该结构中,过去的内存实例(或粒子)与决策之间的相似性相互联系。定义,因此,可以应用“关联记忆”原则来增强学习代理的世界模型。
translated by 谷歌翻译