关键时期是阶段,其中幼儿的大脑在喷射中发展。为促进儿童认知发展,在本阶段至关重要。然而,目前尚不清楚是否存在对AI代理商的培训也存在这种关键时期。与人类幼儿相似,顺序引导和多模式相互作用可能显着提高AI代理的培训效率。为了验证这一假设,我们将此概念调整到AI代理商中学习的关键时期,并调查AI代理人的虚拟环境中的关键时期。我们在加固学习(RL)框架中正规化关键时期和幼儿指导学习。然后,我们建立了一个像veca工具包的幼儿环境,以模仿人类托儿的学习特征。我们研究三个离散的相互互动水平:弱导兵指导(稀疏奖励),中等导师指导(助手奖励)和导师演示(行为克隆)。我们还介绍了由30,000个现实世界图像组成的EAVE数据集,以完全反映幼儿的观点。我们从两个角度评估关键时期对AI代理商的影响:如何以及何时在统一和多式化学习中最佳。我们的实验结果表明,Uni-和多式联运剂,具有中等导师的指导和100万和200万次训练步骤的关键期显示出明显的改进。我们通过在EAVE数据集上传输学习来验证这些结果,并在同一关键时期和指导下找到性能进步。
translated by 谷歌翻译
婴儿生命的最初几年被称为关键时期,在此期间,由于神经可塑性,学习绩效的总体发展受到显着影响。在最近的研究中,具有深层神经网络模仿实际神经元的深层神经网络的AI药物表现出与人类关键时期类似的学习期。特别是在此初期,适当的刺激在发展学习能力中起着至关重要的作用。但是,将人类的认知偏见转变为适当的塑造奖励是非常具有挑战性的,并且在关键时期的先前工作并不集中于寻找适当的刺激。为了进一步迈出一步,我们建议多阶段的增强学习强调在关键时期发现``适当的刺激''。受到人类早期认知发展阶段的启发,我们在关键时期附近使用多阶段的指导,并证明就AI代理的性能,效率和稳定性而言,适当的成型奖励(2阶段指导)。
translated by 谷歌翻译
随着我们日常环境中机器人的存在越来越多,提高社交技能至关重要。尽管如此,社会机器人技术仍然面临许多挑战。一种瓶颈是,由于社会规范的强烈取决于环境,因此需要经常适应机器人行为。例如,与办公室的工人相比,机器人应更仔细地在医院的患者周围进行仔细的导航。在这项工作中,我们将元强化学习(META-RL)作为潜在解决方案进行了研究。在这里,机器人行为是通过强化学习来学习的,需要选择奖励功能,以便机器人学习适合给定环境的行为。我们建议使用一种变异元过程,该过程迅速使机器人的行为适应新的奖励功能。结果,给定一个新的环境,可以快速评估不同的奖励功能,并选择适当的奖励功能。该过程学习奖励函数的矢量表示和可以在这种表示形式下进行条件的元政策。从新的奖励函数中进行观察,该过程确定了其表示形式,并条件元元素对其进行了条件。在研究程序的功能时,我们意识到它遭受了后塌陷的困扰,在表示表示中只有一个尺寸的子集编码有用的信息,从而导致性能降低。我们的第二个贡献是径向基函数(RBF)层,部分减轻了这种负面影响。 RBF层将表示形式提升到较高的维空间,这对于元容器更容易利用。我们证明了RBF层的兴趣以及在四个机器人模拟任务上对社会机器人技术的使用元素使用。
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
声音是现实世界中最有用,最丰富的方式之一,同时可以通过可以放置在移动设备上的小型和便宜的传感器来感知不接触。尽管深度学习能够从多个感官输入中提取信息,但很少有声音控制和学习机器人动作。对于无监督的强化学习,预计代理人将积极地收集经验,并以一种自制的方式共同学习代表和政策。我们使用基于物理的声音模拟来构建逼真的机器人操作场景,并提出内在的好奇模块(ISCM)。 ISCM向加强学习者提供反馈,以学习强大的表示并奖励更有效的探索行为。我们在适应过程中对启用声音进行了启用的声音实验,并表明ISCM所学的表示形式优于仅视力基线的基本线和预训练的策略,可以在应用于下游任务时加速学习过程。
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
在模仿学习的背景下,提供专家轨迹通常是昂贵且耗时的。因此,目标必须是创建算法,这些算法需要尽可能少的专家数据。在本文中,我们提出了一种算法,该算法模仿了专家的高级战略,而不仅仅是模仿行动水平的专家,我们假设这需要更少的专家数据并使培训更加稳定。作为先验,我们假设高级策略是达到未知的目标状态区域,我们假设这对于强化学习中许多领域是有效的先验。目标国家地区未知,但是由于专家已经证明了如何达到目标,因此代理商试图到达与专家类似的州。我们的算法以时间连贯性的思想为基础,训练神经网络,以预测两个状态是否相似,从某种意义上说,它们可能会随着时间的流逝而发生。在推论期间,代理将其当前状态与案例基础的专家状态进行比较以获得相似性。结果表明,我们的方法仍然可以在很少有专家数据的设置中学习一个近乎最佳的政策,这些算法试图模仿动作级别的专家,这一算法再也无法做到了。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
强化学习(RL)和脑电脑接口(BCI)是过去十年一直在增长的两个领域。直到最近,这些字段彼此独立操作。随着对循环(HITL)应用的兴趣升高,RL算法已经适用于人类指导,从而产生互动强化学习(IRL)的子领域。相邻的,BCI应用一直很感兴趣在人机交互期间从神经活动中提取内在反馈。这两个想法通过将BCI集成到IRL框架中,将RL和BCI设置在碰撞过程中,通过将内在反馈可用于帮助培训代理商来帮助框架。这种交叉点被称为内在的IRL。为了进一步帮助,促进BCI和IRL的更深层次,我们对内在IRILL的审查有着重点在于其母体领域的反馈驱动的IRL,同时还提供有关有效性,挑战和未来研究方向的讨论。
translated by 谷歌翻译
深度加强学习(DEEPRL)方法已广泛用于机器人学,以了解环境,自主获取行为。深度互动强化学习(Deepirl)包括来自外部培训师或专家的互动反馈,提供建议,帮助学习者选择采取行动以加快学习过程。但是,目前的研究仅限于仅为特工现任提供可操作建议的互动。另外,在单个使用之后,代理丢弃该信息,该用途在为Revisit以相同状态引起重复过程。在本文中,我们提出了广泛的建议(BPA),这是一种广泛的持久的咨询方法,可以保留并重新使用加工信息。它不仅可以帮助培训师提供与类似状态相关的更一般性建议,而不是仅仅是当前状态,而且还允许代理加快学习过程。我们在两个连续机器人场景中测试提出的方法,即购物车极衡任务和模拟机器人导航任务。所得结果表明,使用BPA的代理的性能在于与深层方法相比保持培训师所需的相互作用的数量。
translated by 谷歌翻译
加强学习是机器人获得从经验中获得技能的强大框架,但通常需要大量的在线数据收集。结果,很难收集机器人概括所需的足够多样化的经验。另一方面,人类的视频是一种易于获得的广泛和有趣的经历来源。在本文中,我们考虑问题:我们可以直接进行强化学习,以便在人类收集的经验吗?这种问题特别困难,因为这种视频没有用动作注释并相对于机器人的实施例展示了大量的视觉畴偏移。为了解决这些挑战,我们提出了一种与视频(RLV)的强化学习框架。 RLV使用人类收集的经验结合机器人收集的数据来了解策略和价值函数。在我们的实验中,我们发现RLV能够利用此类视频来学习基于视觉的愿景技能,以不到一半的样本作为从头开始学习的RL方法。
translated by 谷歌翻译
使用强化学习解决复杂的问题必须将问题分解为可管理的任务,无论是明确或隐式的任务,并学习解决这些任务的政策。反过来,这些政策必须由采取高级决策的总体政策来控制。这需要培训算法在学习这些政策时考虑这种等级决策结构。但是,实践中的培训可能会导致泛化不良,要么在很少的时间步骤执行动作,要么将其全部转变为单个政策。在我们的工作中,我们介绍了一种替代方法来依次学习此类技能,而无需使用总体层次的政策。我们在环境的背景下提出了这种方法,在这种环境的背景下,学习代理目标的主要组成部分是尽可能长时间延长情节。我们将我们提出的方法称为顺序选择评论家。我们在我们开发的灵活的模拟3D导航环境中演示了我们在导航和基于目标任务的方法的实用性。我们还表明,我们的方法优于先前的方法,例如在我们的环境中,柔软的演员和软选择评论家,以及健身房自动驾驶汽车模拟器和Atari River RAID RAID环境。
translated by 谷歌翻译
强化学习的标准制定缺乏指定禁止和禁止行为的实用方式。最常见的是,从业者通过手动工程来指定行为规范的任务,这是一个需要几个迭代的反向直观的过程,并且易于奖励代理人。在这项工作中,我们认为,几乎完全用于安全RL的受限制的RL,也有可能大大减少应用加强学习项目中奖励规范所花费的工作量。为此,我们建议在CMDP框架中指定行为偏好,并使用拉格朗日方法,该方法寻求解决代理程序的策略和拉格朗日乘法器之间的最小问题,以自动称量每个行为约束。具体而言,我们研究了如何调整CMDP,以便解决基于目标的任务,同时遵守一组行为约束,并提出对Sac-Lagrangian算法的修改以处理若干约束的具有挑战性的情况。我们对这一框架进行了一系列持续控制任务,该任务与用于视频游戏中NPC设计的加固学习应用相关。
translated by 谷歌翻译
Meta-Renifiltive学习(Meta-RL)已被证明是利用事先任务的经验,以便快速学习新的相关任务的成功框架,但是,当前的Meta-RL接近在稀疏奖励环境中学习的斗争。尽管现有的Meta-RL算法可以学习适应新的稀疏奖励任务的策略,但是使用手形奖励功能来学习实际适应策略,或者需要简单的环境,其中随机探索足以遇到稀疏奖励。在本文中,我们提出了对Meta-RL的后视抢购的制定,该rl抢购了在Meta培训期间的经验,以便能够使用稀疏奖励完全学习。我们展示了我们的方法在套件挑战稀疏奖励目标达到的环境中,以前需要密集的奖励,以便在Meta训练中解决。我们的方法使用真正的稀疏奖励功能来解决这些环境,性能与具有代理密集奖励功能的培训相当。
translated by 谷歌翻译
强化学习和最近的深度增强学习是解决如Markov决策过程建模的顺序决策问题的流行方法。问题和选择算法和超参数的RL建模需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑因素主要是RL专家的任务;然而,RL在研究人员和系统设计师不是RL专家的其他领域中逐渐变得流行。此外,许多建模决策,例如定义状态和动作空间,批次的大小和批量更新的频率以及时间戳的数量通常是手动进行的。由于这些原因,RL框架的自动化不同组成部分具有重要意义,近年来它引起了很多关注。自动RL提供了一个框架,其中RL的不同组件包括MDP建模,算法选择和超参数优化是自动建模和定义的。在本文中,我们探讨了可以在自动化RL中使用的文献和目前的工作。此外,我们讨论了Autorl中的挑战,打开问题和研究方向。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译