近年来,稀疏神经网络的使用迅速增长,尤其是在计算机视觉中。它们的吸引力在很大程度上源于培训和存储所需的参数数量以及学习效率的提高。有些令人惊讶的是,很少有努力探索他们在深度强化学习中的使用(DRL)。在这项工作中,我们进行了系统的调查,以在各种DRL代理和环境上应用许多现有的稀疏培训技术。我们的结果证实了计算机视觉域中稀疏训练的发现 - 稀疏网络在DRL域中对相同的参数计数的稀疏网络表现更好。我们提供了有关DRL中各种组件如何受到稀疏网络的影响的详细分析,并通过建议有希望的途径提高稀疏训练方法的有效性以及推进其在DRL中的使用来结论。
translated by 谷歌翻译
Many applications require sparse neural networks due to space or inference time restrictions. There is a large body of work on training dense networks to yield sparse networks for inference, but this limits the size of the largest trainable sparse model to that of the largest trainable dense model. In this paper we introduce a method to train sparse neural networks with a fixed parameter count and a fixed computational cost throughout training, without sacrificing accuracy relative to existing dense-tosparse training methods. Our method updates the topology of the sparse network during training by using parameter magnitudes and infrequent gradient calculations. We show that this approach requires fewer floating-point operations (FLOPs) to achieve a given level of accuracy compared to prior techniques. We demonstrate state-of-the-art sparse training results on a variety of networks and datasets, including ResNet-50, MobileNets on Imagenet-2012, and RNNs on WikiText-103. Finally, we provide some insights into why allowing the topology to change during the optimization can overcome local minima encountered when the topology remains static * .
translated by 谷歌翻译
We propose a simple data augmentation technique that can be applied to standard model-free reinforcement learning algorithms, enabling robust learning directly from pixels without the need for auxiliary losses or pre-training. The approach leverages input perturbations commonly used in computer vision tasks to transform input examples, as well as regularizing the value function and policy. Existing model-free approaches, such as Soft Actor-Critic (SAC) [22], are not able to train deep networks effectively from image pixels. However, the addition of our augmentation method dramatically improves SAC's performance, enabling it to reach state-of-the-art performance on the DeepMind control suite, surpassing model-based [23,38,24] methods and recently proposed contrastive learning [50]. Our approach, which we dub DrQ: Data-regularized Q, can be combined with any model-free reinforcement learning algorithm. We further demonstrate this by applying it to DQN [43] and significantly improve its data-efficiency on the Atari 100k [31] benchmark. An implementation can be found at https://sites. google.com/view/data-regularized-q.
translated by 谷歌翻译
深入学习的强化学习(RL)的结合导致了一系列令人印象深刻的壮举,许多相信(深)RL提供了一般能力的代理。然而,RL代理商的成功往往对培训过程中的设计选择非常敏感,这可能需要繁琐和易于易于的手动调整。这使得利用RL对新问题充满挑战,同时也限制了其全部潜力。在许多其他机器学习领域,AutomL已经示出了可以自动化这样的设计选择,并且在应用于RL时也会产生有希望的初始结果。然而,自动化强化学习(AutorL)不仅涉及Automl的标准应用,而且还包括RL独特的额外挑战,其自然地产生了不同的方法。因此,Autorl已成为RL中的一个重要研究领域,提供来自RNA设计的各种应用中的承诺,以便玩游戏等游戏。鉴于RL中考虑的方法和环境的多样性,在不同的子领域进行了大部分研究,从Meta学习到进化。在这项调查中,我们寻求统一自动的领域,我们提供常见的分类法,详细讨论每个区域并对研究人员来说是一个兴趣的开放问题。
translated by 谷歌翻译
Off-policy reinforcement learning (RL) using a fixed offline dataset of logged interactions is an important consideration in real world applications. This paper studies offline RL using the DQN Replay Dataset comprising the entire replay experience of a DQN agent on 60 Atari 2600 games. We demonstrate that recent off-policy deep RL algorithms, even when trained solely on this fixed dataset, outperform the fully-trained DQN agent. To enhance generalization in the offline setting, we present Random Ensemble Mixture (REM), a robust Q-learning algorithm that enforces optimal Bellman consistency on random convex combinations of multiple Q-value estimates. Offline REM trained on the DQN Replay Dataset surpasses strong RL baselines. Ablation studies highlight the role of offline dataset size and diversity as well as the algorithm choice in our positive results. Overall, the results here present an optimistic view that robust RL algorithms used on sufficiently large and diverse offline datasets can lead to high quality policies. To provide a testbed for offline RL and reproduce our results, the DQN Replay Dataset is released at offline-rl.github.io.
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers. We present asynchronous variants of four standard reinforcement learning algorithms and show that parallel actor-learners have a stabilizing effect on training allowing all four methods to successfully train neural network controllers. The best performing method, an asynchronous variant of actor-critic, surpasses the current state-of-the-art on the Atari domain while training for half the time on a single multi-core CPU instead of a GPU. Furthermore, we show that asynchronous actor-critic succeeds on a wide variety of continuous motor control problems as well as on a new task of navigating random 3D mazes using a visual input.
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
可视化优化景观导致了数字优化的许多基本见解,并对优化技术进行了新的改进。但是,仅在少数狭窄的环境中生成了增强学习优化(“奖励表面”)的目标的可视化。这项工作首次介绍了27个最广泛使用的增强学习环境的奖励表面和相关的可视化。我们还探索了政策梯度方向上的奖励表面,并首次表明许多流行的强化学习环境经常出现“悬崖”(预期回报中突然下降)。我们证明,A2C经常将这些悬崖“脱落”到参数空间的低奖励区域,而PPO避免了它们,这证实了PPO对PPO的流行直觉,以改善以前的方法。我们还引入了一个高度可扩展的库,该库使研究人员将来可以轻松地生成这些可视化。我们的发现提供了新的直觉,以解释现代RL方法的成功和失败,我们的可视化构成了以新颖方式进行强化学习剂的几种失败模式。
translated by 谷歌翻译
自成立以来,建立在广泛任务中表现出色的普通代理的任务一直是强化学习的重要目标。这个问题一直是对Alarge工作体系的研究的主题,并且经常通过观察Atari 57基准中包含的广泛范围环境的分数来衡量的性能。 Agent57是所有57场比赛中第一个超过人类基准的代理商,但这是以数据效率差的代价,需要实现近800亿帧的经验。以Agent57为起点,我们采用了各种各样的形式,以降低超过人类基线所需的经验200倍。在减少数据制度和Propose有效的解决方案时,我们遇到了一系列不稳定性和瓶颈,以构建更强大,更有效的代理。我们还使用诸如Muesli和Muzero之类的高性能方法证明了竞争性的性能。 TOOUR方法的四个关键组成部分是(1)近似信任区域方法,该方法可以从TheOnline网络中稳定引导,(2)损失和优先级的归一化方案,在学习具有广泛量表的一组值函数时,可以提高鲁棒性, (3)改进的体系结构采用了NFNET的技术技术来利用更深的网络而无需标准化层,并且(4)政策蒸馏方法可使瞬时贪婪的策略加班。
translated by 谷歌翻译
一种被称为优先体验重播(PER)的广泛研究的深钢筋学习(RL)技术使代理可以从与其时间差异(TD)误差成正比的过渡中学习。尽管已经表明,PER是离散作用域中深度RL方法总体性能的最关键组成部分之一,但许多经验研究表明,在连续控制中,它的表现非常低于参与者 - 批评算法。从理论上讲,我们表明,无法有效地通过具有较大TD错误的过渡对演员网络进行训练。结果,在Q网络下计算的近似策略梯度与在最佳Q功能下计算的实际梯度不同。在此激励的基础上,我们引入了一种新颖的经验重播抽样框架,用于演员批评方法,该框架还认为稳定性和最新发现的问题是Per的经验表现不佳。引入的算法提出了对演员和评论家网络的有效和高效培训的改进的新分支。一系列广泛的实验验证了我们的理论主张,并证明了引入的方法显着优于竞争方法,并获得了与标准的非政策参与者 - 批评算法相比,获得最先进的结果。
translated by 谷歌翻译
由于其令人鼓舞的性能,在各种控制任务中的令人鼓舞的表现,深增强学习(Deep RL)一直在受到更高的关注。然而,在训练神经网络中的常规正则化技术(例如,$ L_2 $正则化,辍学)已经在RL方法中被忽略,可能是因为代理通常在相同的环境中进行培训和评估,因为Deep RL社区重点关注更多-Level算法设计。在这项工作中,我们在连续控制任务中提出了具有多种策略优化算法的正则化技术的第一综合研究。有趣的是,我们发现策略网络上的传统正则化技术通常可以带来大量改进,特别是在更难的任务上。我们的研究结果显示在训练HyperParameter变化方面是强大的。我们还将这些技术与更广泛使用的熵正则化进行了比较。此外,我们还研究正规化不同的组件,并发现策略网络通常是最佳的。我们进一步分析了为什么正则化可能有助于从四个观点来帮助推广 - 样本复杂性,奖励分配,重量规范和噪音鲁棒性。我们希望我们的研究为未来的规则策略优化算法提供指导。我们的代码可在https://github.com/xuanlinli17/ICLRR2021_RLREG上获得。
translated by 谷歌翻译
在无模型的深度加强学习(RL)算法中,利用嘈杂的值估计监督政策评估和优化对样品效率有害。由于这种噪声是异源的,因此可以在优化过程中使用基于不确定性的权重来缓解其效果。以前的方法依赖于采样的合奏,这不会捕获不确定性的所有方面。我们对在RL的嘈杂监管中提供了对不确定性的不确定性来源的系统分析,并引入了诸如将概率集合和批处理逆差加权组合的贝叶斯框架的逆差异RL。我们提出了一种方法,其中两个互补的不确定性估计方法占Q值和环境随机性,以更好地减轻嘈杂监督的负面影响。我们的结果表明,对离散和连续控制任务的采样效率方面显着改进。
translated by 谷歌翻译
我们确定和研究政策流失的现象,即基于价值的强化学习中贪婪政策的快速变化。政策流失以惊人的快速步伐运作,改变了少数学习更新(在Atari上的DQN等典型的深层RL设置中)中大量州的贪婪行动。我们从经验上表征了现象,验证它不限于特定算法或环境特性。许多消融有助于削弱关于为什么流失仅与深度学习有关的少数相关的合理解释。最后,我们假设政策流失是一种有益但被忽视的隐性探索形式,它以新鲜的方式铸造了$ \ epsilon $ greedy探索,即$ \ epsilon $ - noise的作用比预期的要小得多。
translated by 谷歌翻译
本文探讨了在深度参与者批评的增强学习模型中同时学习价值功能和政策的问题。我们发现,由于这两个任务之间的噪声水平差异差异,共同学习这些功能的共同实践是亚最佳选择。取而代之的是,我们表明独立学习这些任务,但是由于蒸馏阶段有限,可以显着提高性能。此外,我们发现可以使用较低的\ textIt {方差}返回估计值来降低策略梯度噪声水平。鉴于,值学习噪声水平降低了较低的\ textit {bias}估计值。这些见解共同为近端策略优化的扩展提供了信息,我们称为\ textit {dual Network Archituction}(DNA),这极大地超过了其前身。DNA还超过了受欢迎的彩虹DQN算法在测试的五个环境中的四个环境中的性能,即使在更困难的随机控制设置下也是如此。
translated by 谷歌翻译
本文介绍了一些最先进的加强学习算法的基准研究,用于解决两个模拟基于视觉的机器人问题。本研究中考虑的算法包括软演员 - 评论家(SAC),近端政策优化(PPO),内插政策梯度(IPG),以及与后敏感体验重播(她)的变体。将这些算法的性能与Pybullet的两个仿真环境进行比较,称为KukadiverseObjectenV和raceCarzedgymenv。这些环境中的状态观察以RGB图像的形式提供,并且动作空间是连续的,使得它们难以解决。建议许多策略提供在基本上单目标环境的这些问题上实施算法所需的中级后敏感目标。另外,提出了许多特征提取架构在学习过程中纳入空间和时间关注。通过严格的模拟实验,建立了这些组分实现的改进。据我们所知,这种基准测试的基础基础是基于视觉的机器人问题的基准研究,使其成为该领域的新贡献。
translated by 谷歌翻译
The deep reinforcement learning community has made several independent improvements to the DQN algorithm. However, it is unclear which of these extensions are complementary and can be fruitfully combined. This paper examines six extensions to the DQN algorithm and empirically studies their combination. Our experiments show that the combination provides state-of-the-art performance on the Atari 2600 benchmark, both in terms of data efficiency and final performance. We also provide results from a detailed ablation study that shows the contribution of each component to overall performance.
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译
软件测试活动旨在找到软件产品的可能缺陷,并确保该产品满足其预期要求。一些软件测试接近的方法缺乏自动化或部分自动化,这增加了测试时间和整体软件测试成本。最近,增强学习(RL)已成功地用于复杂的测试任务中,例如游戏测试,回归测试和测试案例优先级,以自动化该过程并提供持续的适应。从业者可以通过从头开始实现RL算法或使用RL框架来使用RL。开发人员已广泛使用这些框架来解决包括软件测试在内的各个领域中的问题。但是,据我们所知,尚无研究从经验上评估RL框架中实用算法的有效性和性能。在本文中,我们凭经验研究了精心选择的RL算法在两个重要的软件测试任务上的应用:在连续集成(CI)和游戏测试的上下文中测试案例的优先级。对于游戏测试任务,我们在简单游戏上进行实验,并使用RL算法探索游戏以检测错误。结果表明,一些选定的RL框架,例如Tensorforce优于文献的最新方法。为了确定测试用例的优先级,我们在CI环境上运行实验,其中使用来自不同框架的RL算法来对测试用例进行排名。我们的结果表明,在某些情况下,预实算算法之间的性能差异很大,激励了进一步的研究。此外,建议对希望选择RL框架的研究人员进行一些基准问题的经验评估,以确保RL算法按预期执行。
translated by 谷歌翻译