汤普森抽样(TS)吸引了对强盗区域的兴趣。它在20世纪30年代介绍,但近年来尚未经过理论上证明。其在组合多武装强盗(CMAB)设置中的所有分析都需要精确的Oracle来提供任何输入的最佳解决方案。然而,这种Oracle通常是不可行的,因为许多组合优化问题是NP - 硬,并且只有近似oracles可用。一个例子(王和陈,2018)已经表明TS的失败来学习近似Oracle。但是,此Oracle罕见,仅用于特定问题实例。它仍然是一个开放的问题,无论TS的收敛分析是否可以扩展到CMAB中的精确oracle。在本文中,我们在贪婪的Oracle下研究了这个问题,这是一个常见的(近似)Oracle,具有理论上的保证来解决许多(离线)组合优化问题。我们提供了一个问题依赖性遗憾的遗憾下限为$ \ omega(\ log t / delta ^ 2)$,以量化Ts的硬度来解决贪婪的甲骨文的CMAB问题,其中$ T $是时间范围和$ Delta $是一些奖励差距。我们还提供几乎匹配的遗憾上限。这些是TS解决CMAB与常见近似甲骨文的第一个理论结果,并打破TS无法使用近似神谕的误解。
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
现有的组合纯探索方法主要集中在UCB方法上。为了提高算法,他们通常使用ARM SET $ S $内的上限限制的总和来表示$ S $的上限限制,这可能比$ S $的紧密上限限制大得多,并导致由于$ S $中不同武器的经验手段是独立的,因此复杂性要比必要的要高得多。为了应对这一挑战,我们探索了使用独立的随机样品而不是上限置信边界的汤普森采样(TS)的想法,并为(组合)纯探索设计了第一个基于TS的算法TS-TS-explore。在TS-explore中,ARM集合$ S $中的独立随机样品的总和不会超过具有高概率的$ S $的紧密上限限制。因此,它解决了上述挑战,并且比一般组合纯探索中现有的基于UCB的算法的复杂性更高。至于对经典多臂强盗的纯粹探索,我们表明TS-explore实现了渐近最佳的复杂性上限。
translated by 谷歌翻译
在本文中,我们通过提取最小半径路径研究网络中的瓶颈标识。许多现实世界网络具有随机重量,用于预先提供全面知识。因此,我们将此任务塑造为组合半发布会问题,我们应用了汤普森采样的组合版本,并在相应的贝叶斯遗憾地建立了上限。由于该问题的计算诡计,我们设计了一种替代问题,其近似于原始目标。最后,我们通过对现实世界指导和无向网络的近似配方进行了实验评估了汤普森抽样的性能。
translated by 谷歌翻译
在本文中,我们研究了组合半伴侣(CMAB),并专注于减少遗憾的批量$ k $的依赖性,其中$ k $是可以拉动或触发的武器总数每个回合。首先,对于用概率触发的臂(CMAB-T)设置CMAB,我们发现了一个新颖的(定向)触发概率和方差调制(TPVM)条件,可以替代各种应用程序的先前使用的平滑度条件,例如级联bandsistits bandits bandits。 ,在线网络探索和在线影响最大化。在这种新条件下,我们提出了一种具有方差感知置信区间的BCUCB-T算法,并进行遗憾分析,将$ O(k)$ actival降低到$ o(\ log k)$或$ o(\ log^2 k) )$在遗憾中,大大改善了上述申请的后悔界限。其次,为了设置具有独立武器的非触发CMAB,我们提出了一种SESCB算法,该算法利用TPVM条件的非触发版本,并完全消除了对$ k $的依赖,以备受遗憾。作为有价值的副产品,本文使用的遗憾分析可以将几个现有结果提高到$ O(\ log K)$的一倍。最后,实验评估表明,与不同应用中的基准算法相比,我们的表现出色。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
通过图形反馈的在线学习问题已经在文献中进行了广泛的研究,因为它的一般性和对各种学习任务进行建模的潜力。现有作品主要研究对抗和随机反馈。如果对反馈机制的先验知识是不可用的或错误的,那么这种专门设计的算法可能会遭受巨大的损失。为了避免此问题,\ citet {ererez2021towards}尝试针对两个环境进行优化。但是,他们认为反馈图是无方向性的,每个顶点都有一个自循环,这会损害框架的通用性,并且在应用程序中可能无法满足。有了一般的反馈图,在拉动该手臂时可能无法观察到手臂,这使得探索更加昂贵,并且在两种环境中最佳性能的算法更具挑战性。在这项工作中,我们通过新的权衡机制克服了这一困难,并精心设计的探索和剥削比例。我们证明了所提出的算法同时实现$ \ mathrm {poly} \ log t $在随机设置中的遗憾,而在$ versarial设置中,$ \ tilde {o} $ \ tilde {o}的最小值遗憾t $是地平线,$ \ tilde {o} $隐藏参数独立于$ t $以及对数项。据我们所知,这是通用反馈图的第一个最佳世界结果。
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译
我们通过可共享的手臂设置概括了多武器的多臂土匪(MP-MAB)问题,其中几场比赛可以共享同一臂。此外,每个可共享的组都有有限的奖励能力和“每载”奖励分配,这两者都是学习者所不知道的。可共享臂的奖励取决于负载,这是“每载”奖励乘以拉动手臂的戏剧数量或当比赛数量超过容量限制时的奖励能力。当“按负载”奖励遵循高斯分布时,我们证明了样本复杂性的下限,从负载依赖的奖励中学习容量,也遗憾的是这个新的MP-MAB问题的下限。我们设计了一个容量估计器,其样品复杂性上限在奖励手段和能力方面与下限匹配。我们还提出了一种在线学习算法来解决该问题并证明其遗憾的上限。这个遗憾的上界的第一任期与遗憾的下限相同,其第二和第三个术语显然也对应于下边界。广泛的实验验证了我们算法的性能以及其在5G和4G基站选择中的增长。
translated by 谷歌翻译
在许多真实世界应用程序的组合匪徒如内容缓存,必须在满足最小服务要求的同时最大化奖励。此外,基本ARM可用性随着时间的推移而变化,并且采取的行动需要适应奖励最大化的情况。我们提出了一个名为Contexal Combinatial Volatile Birtits的新的强盗模型,具有组阈值来解决这些挑战。我们的模型通过考虑超级臂作为基础臂组的子集来归档组合匪徒。我们寻求最大化超级手臂奖励,同时满足构成超级臂的所有基座组的阈值。为此,我们定义了一个新的遗憾遗嘱,使超级臂奖励最大化与团体奖励满意度合并。为了便于学习,我们假设基臂的平均结果是由上下文索引的高斯过程的样本,并且预期的奖励是Lipschitz在预期的基础臂结果中连续。我们提出了一种算法,称为阈值组合高斯工艺的上置信度界限(TCGP-UCB),最大化累积奖励和满足组奖励阈值之间的余额,并证明它会导致$ \ tilde {o}(k \ sqrt {t \ overline { \ gamma} _ {t}})$后悔具有高概率,其中$ \ overline {\ gamma} _ {t} $是与第一个$ t $轮中出现的基本arm上下文相关联的最大信息增益$ k $是所有在所有轮匝上任何可行行动的超级臂基数。我们在实验中展示了我们的算法累积了与最先进的组合强盗算法相当的奖励,同时采摘群体满足其阈值的动作。
translated by 谷歌翻译
我们通过反馈图来重新审视随机在线学习的问题,目的是设计最佳的算法,直至常数,无论是渐近还是有限的时间。我们表明,令人惊讶的是,在这种情况下,最佳有限时间遗憾的概念并不是一个唯一的定义属性,总的来说,它与渐近率是与渐近率分离的。我们讨论了替代选择,并提出了有限时间最优性的概念,我们认为是\ emph {有意义的}。对于这个概念,我们给出了一种算法,在有限的时间和渐近上都承认了准最佳的遗憾。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
在本文中,我们研究了半发布反馈下的随机组合多武装强盗问题。虽然在算法上完成了很多工作,但优化线性的预期奖励以及一些一般奖励功能,我们研究了一个问题的变种,其中目标是风险感知。更具体地说,我们考虑最大化条件价值(CVAR)的问题,这是一个仅考虑最坏情况奖励的风险措施。我们提出了新的算法,最大化了从组合匪盗的超级臂上获得的奖励的CVAR,用于两个高斯和有界手臂奖励的两种情况。我们进一步分析了这些算法并提供了遗憾的界限。我们认为,我们的结果在风险感知案例中提供了对组合半强盗问题的第一个理论见解。
translated by 谷歌翻译
广泛观察到,在实际推荐系统中,诸如“点击框架”等“点击框架”的战略行为。通过这种行为的激励,我们在奖励的战略操纵下研究组合多武装匪徒(CMAB)的问题,其中每个臂可以为自己的兴趣修改发出的奖励信号。这种对抗性行为的表征是对先前研究的环境放松,例如对抗性攻击和对抗性腐败。我们提出了一种战略变体的组合UCB算法,其遗憾是最多的$ O(m \ log t + m b_ {max})$的战略操作,其中$ t $是时间范围,$ m $武器数量和$ b_ {max} $是手臂的最大预算。我们为武器预算提供了下限,以引起强盗算法的某些遗憾。在线工人选择对众包系统的大量实验,在线影响合成和实际数据集的最大化和在线建议,以鲁棒性和遗憾的界限提供了我们的理论发现,在各种操纵预算制度中。
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
我们为随机线性匪徒问题提出了一种新的基于自举的在线算法。关键的想法是采用残留的自举勘探,在该探索中,代理商通过重新采样平均奖励估算的残差来估算下一步奖励。我们的算法,随机线性匪徒(\ texttt {linreboot})的残留bootstrap探索,从其重新采样分布中估算了线性奖励,并以最高的奖励估计拉动了手臂。特别是,我们为理论框架做出了一个理论框架,以使基于自举的探索机制在随机线性匪徒问题中脱颖而出。关键见解是,Bootstrap探索的强度基于在线学习模型和残差的重新采样分布之间的乐观情绪。这样的观察使我们能够证明所提出的\ texttt {linreboot}确保了高概率$ \ tilde {o}(d \ sqrt {n})$ sub-linear在温和条件下的遗憾。我们的实验支持\ texttt {重新启动}原理在线性匪徒问题的各种公式中的简易概括性,并显示了\ texttt {linreboot}的显着计算效率。
translated by 谷歌翻译
汤普森采样(TS)是解决上下文多武装强盗问题最有效的算法之一。在本文中,我们提出了一种新的算法,称为神经汤普森采样,这适应了深度神经网络,用于勘探和剥削。在我们的算法的核心是一种新的奖励的后分布,其平均值是神经网络近似器,并且其方差建立在相应神经网络的神经切线特征上。我们证明,如果底层奖励函数是有界的,则可以保证所提出的算法来实现$ \ mathcal {o}(t ^ {1/2})$的累积遗憾,它与其他上下文强盗算法的遗憾匹配总轮数量$ t $。各种数据集中其他基准强盗算法的实验比较证实了我们的理论。
translated by 谷歌翻译
我们研究了在线多任务学习的问题,其中在相似但不一定相同的多臂强盗环境中执行任务。特别是,我们研究学习者如何通过知识转移来改善多个相关任务的整体绩效。虽然最近已证明,在所有任务同时解决的环境中,尚不清楚汤普森采样(TS)算法是否尚不清楚,虽然最近证明了基于上限的算法(UCB)算法几乎达到了最佳的性能保证,具有类似的理论属性。在这项工作中,我们为更通用的在线多任务学习协议提供了TS-Type算法,该协议扩展了并发设置。我们提供了其频繁的分析,并证明它在随机停止时间内使用新型浓度不平等的多任务数据聚集也几乎是最佳的。最后,我们评估了关于合成数据的算法,并表明与基于UCB的算法相比,TS-Type算法具有出色的经验性能和基线算法,该算法在没有转移的情况下为每个单独的任务执行TS。
translated by 谷歌翻译