组织病理学全幻灯片图像(WSIS)可以显示出明显的院间变异性,例如照明,颜色或光学伪影。这些变化是由在医疗中心(染色,扫描仪)中使用不同扫描协议引起的,可能会严重损害看不见的协议上的算法概括。这激发了开发新方法以限制这种表现的下降。在本文中,为了增强对看不见的目标协议的鲁棒性,我们提出了基于多域图像到图像翻译的新测试时间数据增强。它允许在对每个源域进行分类并结合预测之前将图像从看不见的协议投射到每个源域。该测试时间增强方法可显着增强域概括的性能。为了证明其有效性,我们的方法已在两项不同的组织病理学任务上进行了评估,在这些任务中,它的表现优于常规域的概括,标准的H&E特定颜色增强/归一化和标准测试时间增强技术。我们的代码可在https://gitlab.com/vitadx/articles/test time-i2i-translation-semembling上公开获取。
translated by 谷歌翻译
组织病理学依赖于微观组织图像的分析来诊断疾病。组织制备的关键部分正在染色,从而使染料用于使显着的组织成分更具区分。但是,实验室协议和扫描设备的差异导致相应图像的显着混淆外观变化。这种变异增加了人类错误和评估者间的变异性,并阻碍了自动或半自动方法的性能。在本文中,我们引入了一个无监督的对抗网络,以在多个数据采集域中翻译(因此使)整个幻灯片图像。我们的关键贡献是:(i)一种对抗性体系结构,该架构使用信息流分支通过单个发电机 - 歧视器网络在多个域中学习,该信息流分支优化可感知损失,以及(ii)在培训过程中包含一个附加功能提取网络,以指导指导指导的额外功能提取网络。转换网络以保持组织图像中的所有结构特征完整。我们:(i)首先证明了提出的方法对120例肾癌的H \&e幻灯片的有效性,以及(ii)显示了该方法对更一般问题的好处,例如基于灵活照明的自然图像增强功能和光源适应。
translated by 谷歌翻译
概括跨越不同视觉域的学习表现的能力,例如在真正的照片,剪贴画,绘画和草图之间是人类视觉系统的基本容量。在本文中,不同于利用一些(或全部)源域监控的大多数跨域工作,我们接近一个相对较新的,非常实用的无监督域泛化(UDG)设置在既不源也不在源域中没有培训监督。我们的方法是基于跨域(BRAD)的桥梁​​的自我监督学习 - 辅助桥域附有一组从每个训练域的Brad将视觉(图像到图像)映射保留的一组语义。 BRAD和MAPPAPAPPED(端到端)与对比的自我监督表示模型一起学习(端到端),其用语义对齐每个域将每个域对齐,因此隐含地驱动所有域(见或看不见)语义上彼此对齐。在这项工作中,我们展示了如何使用边缘正则化的布拉德,我们的方法在多个基准和一系列任务中实现了显着的增益,包括UDG,少量UDA和跨多个域数据集的无监督概括(包括指向未经看明域的概念和课程)。
translated by 谷歌翻译
Improving model's generalizability against domain shifts is crucial, especially for safety-critical applications such as autonomous driving. Real-world domain styles can vary substantially due to environment changes and sensor noises, but deep models only know the training domain style. Such domain style gap impedes model generalization on diverse real-world domains. Our proposed Normalization Perturbation (NP) can effectively overcome this domain style overfitting problem. We observe that this problem is mainly caused by the biased distribution of low-level features learned in shallow CNN layers. Thus, we propose to perturb the channel statistics of source domain features to synthesize various latent styles, so that the trained deep model can perceive diverse potential domains and generalizes well even without observations of target domain data in training. We further explore the style-sensitive channels for effective style synthesis. Normalization Perturbation only relies on a single source domain and is surprisingly effective and extremely easy to implement. Extensive experiments verify the effectiveness of our method for generalizing models under real-world domain shifts.
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
当部署和培训之间存在分配变化时,深层神经网络的性能恶化严重。域的概括(DG)旨在通过仅依靠一组源域来安全地传输模型以看不见目标域。尽管已经提出了各种DG方法,但最近的一项名为Domainbed的研究表明,其中大多数没有超过简单的经验风险最小化(ERM)。为此,我们提出了一个通用框架,该框架与现有的DG算法是正交的,并且可以始终如一地提高其性能。与以前的DG作品不同的是,在静态源模型上有希望成为通用的DG,我们提出的ADAODM会在测试时间适应不同目标域的源模型。具体而言,我们在共享域形式的特征提取器上创建多个域特异性分类器。特征提取器和分类器以对抗性方式进行了训练,其中特征提取器将输入样品嵌入到域不变的空间中,并且多个分类器捕获了每个分类器与特定源域有关的独特决策边界。在测试过程中,可以通过利用源分类器之间的预测分歧来有效地衡量目标和源域之间的分布差异。通过微调源模型以最大程度地减少测试时间的分歧,目标域特征与不变特征空间很好地对齐。我们验证了两种流行的DG方法,即ERM和Coral,以及四个DG基准,即VLCS,PACS,OfficeHome和TerrainCognita。结果表明,ADAODM稳定地提高了对看不见的域的概括能力,并实现了最先进的性能。
translated by 谷歌翻译
旨在概括在源域中训练的模型来看不见的目标域,域泛化(DG)最近引起了很多关注。 DG的关键问题是如何防止对观察到的源极域的过度接收,因为在培训期间目标域不可用。我们调查过度拟合不仅导致未经看不见的目标域的普遍推广能力,而且在测试阶段导致不稳定的预测。在本文中,我们观察到,在训练阶段采样多个任务并在测试阶段产生增强图像,很大程度上有利于泛化性能。因此,通过处理不同视图的任务和图像,我们提出了一种新颖的多视图DG框架。具体地,在训练阶段,为了提高泛化能力,我们开发了一种多视图正则化元学习算法,该算法采用多个任务在更新模型期间产生合适的优化方向。在测试阶段,为了减轻不稳定的预测,我们利用多个增强图像来产生多视图预测,这通过熔断测试图像的不同视图的结果显着促进了模型可靠性。三个基准数据集的广泛实验验证了我们的方法优于几种最先进的方法。
translated by 谷歌翻译
主流最先进的域泛化算法倾向于优先考虑跨域语义不变性的假设。同时,固有的域内风格不变性通常被低估并放在架子上。在本文中,我们揭示了利用域内风格的不变性,在提高域泛化效率方面也具有关键重要性。我们验证了网络对域功能不变并在实例之间共享的内容至关重要,以便网络锐化其理解并提高其语义判别能力。相应地,我们还提出了一种新颖的“陪审团”机制,在域之间学习有用的语义特征共性特别有效。我们的完整型号称为Steam可以被解释为新颖的概率图形模型,该图形模型需要方便的两种内存库的方便结构:语义特征银行和风格的功能库。经验结果表明,我们的拟议框架通过清晰的边缘超越了最先进的方法。
translated by 谷歌翻译
Human adaptability relies crucially on the ability to learn and merge knowledge both from supervised and unsupervised learning: the parents point out few important concepts, but then the children fill in the gaps on their own. This is particularly effective, because supervised learning can never be exhaustive and thus learning autonomously allows to discover invariances and regularities that help to generalize. In this paper we propose to apply a similar approach to the task of object recognition across domains: our model learns the semantic labels in a supervised fashion, and broadens its understanding of the data by learning from self-supervised signals how to solve a jigsaw puzzle on the same images. This secondary task helps the network to learn the concepts of spatial correlation while acting as a regularizer for the classification task. Multiple experiments on the PACS, VLCS, Office-Home and digits datasets confirm our intuition and show that this simple method outperforms previous domain generalization and adaptation solutions. An ablation study further illustrates the inner workings of our approach.
translated by 谷歌翻译
对于医学图像分割,想象一下,如果仅使用源域中的MR图像训练模型,它的性能如何直接在目标域中进行CT图像?这种设置,即概括的跨模块分割,拥有其临床潜力,其比其他相关设置更具挑战性,例如域适应。为实现这一目标,我们本文通过利用在我们更广泛的分割期间利用增强的源相似和源不同的图像来提出新的双标准化模块。具体而言,给定单个源域,旨在模拟未经证明的目标域中可能的外观变化,我们首先利用非线性变换来增加源相似和源不同的图像。然后,为了充分利用这两种类型的增强,我们所提出的基于双重定量的模型采用共享骨干但独立的批量归一化层,用于单独归一化。之后,我们提出了一种基于风格的选择方案来自动选择测试阶段的适当路径。在三个公开可用的数据集上进行了广泛的实验,即Brats,跨型心脏和腹部多器官数据集表明我们的方法优于其他最先进的域概括方法。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
卷积神经网络已广泛应用于医学图像分割,并取得了相当大的性能。但是,性能可能会受到训练数据(源域)和测试数据(目标域)之间域间隙的显着影响。为了解决此问题,我们提出了一种基于数据操作的域泛化方法,称为域概括(AADG)的自动增强。我们的AADG框架可以有效地采样数据增强策略,从而产生新的领域并从适当的搜索空间中多样化训练集。具体而言,我们介绍了一项新的代理任务,以最大程度地提高了多个增强新颖的域之间的多样性,该域通过单位球体空间中的凹痕距离来衡量,从而使自动化的增强可牵引。对抗性训练和深入的强化学习有效地搜索了目标。全面执行了11个公开底部的底面图像数据集的定量和定性实验(四个用于视网膜血管分割,四个用于视盘和杯子和杯(OD/OC)分割(OD/OC)分割,视网膜病变细分进行了三个)。两个用于视网膜脉管系统分割的八八个数据集进一步涉及验证跨模式泛化。我们提出的AADG通过视网膜船,OD/OC和病变细分任务的相当大的利润来表现出最新的概括性能,并优于现有方法。学到的政策在经验上得到了证实为模型不平衡,并且可以很好地转移到其他模型中。源代码可在https://github.com/crazorback/aadg上找到。
translated by 谷歌翻译
学习域不变的表示已成为域适应/概括的最受欢迎的方法之一。在本文中,我们表明不变的表示可能不足以保证良好的概括,在考虑标签函数转移的情况下。受到这一点的启发,我们首先在经验风险上获得了新的概括上限,该概括风险明确考虑了标签函数移动。然后,我们提出了特定领域的风险最小化(DRM),该风险最小化(DRM)可以分别对不同域的分布移动进行建模,并为目标域选择最合适的域。对四个流行的域概括数据集(CMNIST,PACS,VLCS和域)进行了广泛的实验,证明了所提出的DRM对域泛化的有效性,具有以下优点:1)它的表现明显超过了竞争性盆地的表现; 2)与香草经验风险最小化(ERM)相比,所有训练领域都可以在所有训练领域中具有可比性或优越的精度; 3)在培训期间,它仍然非常简单和高效,4)与不变的学习方法是互补的。
translated by 谷歌翻译
整个幻灯片组织学图像中的组织类型学注释是一项复杂而乏味但既繁琐但必要的任务,用于开发计算病理学模型。我们建议通过将开放式识别技术应用于共同分类属于一组带注释类的组织的任务来解决此问题。临床相关的组织类别,同时拒绝测试时间开放式样品,即属于训练集中不存在的类别的图像。为此,我们引入了一种基于训练模型的开放式组织病理图像识别的新方法,以准确识别图像类别,并同时预测已应用了哪些数据增强变换。在测试时间中,我们测量了模型的置信度预测这种转换,我们期望开放集中的图像较低。在组织学图像的结直肠癌评估的背景下,我们进行了全面的实验,这些实验为我们的方法提供了证据,以自动从未知类别中识别样品的优势。代码在https://github.com/agaldran/t3po上发布。
translated by 谷歌翻译
组织病理学图像的出现取决于组织类型,染色和数字化过程。这些因素因来源而异,是域转移问题的潜在原因。由于这个问题,尽管深度学习模型在计算病理学中取得了巨大的成功,但在特定领域训练的模型当我们将其应用于另一个领域时,仍可能会表现出色。为了克服这一点,我们提出了一种称为PatchShuffling的新扩展,并为预训练的深度学习模型而被称为Impash的新型自我监视的对比学习框架。使用这些,我们获得了一个RESNET50编码器,该编码器可以提取对域移位抗性的图像表示。我们通过使用其他域普通化技术来比较了我们的派生表示形式,它们通过将它们用于结直肠组织图像的跨域分类。我们表明,所提出的方法优于其他传统的组织学领域适应和最先进的自我监督学习方法。代码可在以下网址获得:https://github.com/trinhvg/impash。
translated by 谷歌翻译
Objective: Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. Method: We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. Conclusion: The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. Significance: This study shows the potential of using semi-supervised GAN-based classification to improve bladder tissue classification when annotations are limited in multi-domain data.
translated by 谷歌翻译
理想情况下,应概遍的视觉学习算法,用于在新目标环境中部署时处理任何看不见的域移位;和数据效率,通过使用尽可能少的标签来降低开发成本。为此,我们研究半监督域泛化(SSDG),旨在使用多源,部分标记的培训数据学习域广泛的模型。我们设计了两个基准,涵盖了两个相关领域,即域泛化(DG)和半监督学习(SSL)开发的最先进方法。我们发现,通过设计无法处理未标记数据的DG方法,在SSDG中使用有限的标签表现不佳; SSL方法,尤其是FixMatch,获得更好的结果,但仍远离使用完整标签培训的基本vanilla模型。我们提出了一种简单的方法,一种简单的方法,将FixMatch扩展到SSDG的几个新成分:1)随机模型,用于减少稀缺标签的过度拟合,2)多视图一致性学习,用于增强域泛化。尽管设计简洁,StyleAtch可以实现SSDG的显着改进。我们希望我们的方法和全面的基准可以为未来的概括和数据高效学习系统进行铺平。源代码以\ url {https://github.com/kaiyangzhou/ssdg-benchmark}释放。
translated by 谷歌翻译
在现实生活中,机器学习模型经常面临培训和测试域之间存在数据分布的变化的情景。当目标是对不同于在培训中看到的分布的预测,我们会产生域泛化问题。解决此问题的方法使用来自多个源域的数据来学习模型,然后将此模型应用于未经调整的目标域。我们的假设是,当用多个域训练时,每个迷你批处理中的冲突梯度包含特定于与其他域的各个域特定的信息,包括测试域。如果保持不受影响,这种分歧可能会降低泛化性能。在这项工作中,我们在域移情中出现的突出梯度,并根据梯度手术制定新的渐变协议策略,以减轻其效果。我们在具有三个多域数据集中的图像分类任务中验证了我们的方法,显示了提高域移位情景中深入学习模型的泛化能力的拟议协议策略的价值。
translated by 谷歌翻译
域概括人员重新识别旨在将培训的模型应用于未经看明域。先前作品将所有培训域中的数据组合以捕获域不变的功能,或者采用专家的混合来调查特定域的信息。在这项工作中,我们争辩说,域特定和域不变的功能对于提高重新ID模型的泛化能力至关重要。为此,我们设计了一种新颖的框架,我们命名为两流自适应学习(tal),同时模拟这两种信息。具体地,提出了一种特定于域的流以捕获具有批量归一化(BN)参数的训练域统计,而自适应匹配层被设计为动态聚合域级信息。同时,我们在域不变流中设计一个自适应BN层,以近似各种看不见域的统计信息。这两个流自适应地和协作地工作,以学习更广泛的重新ID功能。我们的框架可以应用于单源和多源域泛化任务,实验结果表明我们的框架显着优于最先进的方法。
translated by 谷歌翻译