Improving model's generalizability against domain shifts is crucial, especially for safety-critical applications such as autonomous driving. Real-world domain styles can vary substantially due to environment changes and sensor noises, but deep models only know the training domain style. Such domain style gap impedes model generalization on diverse real-world domains. Our proposed Normalization Perturbation (NP) can effectively overcome this domain style overfitting problem. We observe that this problem is mainly caused by the biased distribution of low-level features learned in shallow CNN layers. Thus, we propose to perturb the channel statistics of source domain features to synthesize various latent styles, so that the trained deep model can perceive diverse potential domains and generalizes well even without observations of target domain data in training. We further explore the style-sensitive channels for effective style synthesis. Normalization Perturbation only relies on a single source domain and is surprisingly effective and extremely easy to implement. Extensive experiments verify the effectiveness of our method for generalizing models under real-world domain shifts.
translated by 谷歌翻译
基于无监督的域适应性(UDA),由于目标情景的表现有希望的表现,面部抗散热器(FAS)方法引起了人们的注意。大多数现有的UDA FAS方法通常通过对齐语义高级功能的分布来拟合受过训练的模型。但是,对未标记的目标域的监督不足,低水平特征对齐降低了现有方法的性能。为了解决这些问题,我们提出了UDA FAS的新颖观点,该视角将目标数据直接适合于模型,即,通过图像翻译将目标数据风格化为源域样式,并进一步将风格化的数据提供给训练有素的数据分类的源模型。提出的生成域适应(GDA)框架结合了两个精心设计的一致性约束:1)域间神经统计量的一致性指导发生器缩小域间间隙。 2)双层语义一致性确保了风格化图像的语义质量。此外,我们提出了域内频谱混合物,以进一步扩大目标数据分布,以确保概括并减少域内间隙。广泛的实验和可视化证明了我们方法对最新方法的有效性。
translated by 谷歌翻译
在本文中,我们考虑了语义分割中域概括的问题,该问题旨在仅使用标记的合成(源)数据来学习强大的模型。该模型有望在看不见的真实(目标)域上表现良好。我们的研究发现,图像样式的变化在很大程度上可以影响模型的性能,并且样式特征可以通过图像的频率平均值和标准偏差来很好地表示。受此启发,我们提出了一种新颖的对抗性增强(Advstyle)方法,该方法可以在训练过程中动态生成硬性化的图像,因此可以有效防止该模型过度适应源域。具体而言,AdvStyle将样式功能视为可学习的参数,并通过对抗培训对其进行更新。学习的对抗性风格功能用于构建用于健壮模型训练的对抗图像。 AdvStyle易于实现,并且可以轻松地应用于不同的模型。对两个合成到现实的语义分割基准的实验表明,Advstyle可以显着改善看不见的真实域的模型性能,并表明我们可以实现最新技术的状态。此外,可以将AdvStyle用于域通用图像分类,并在考虑的数据集上产生明显的改进。
translated by 谷歌翻译
在本文中,我们解决了一次性分段的单次无监督域适应(OSUDA)的问题,其中分段器在训练期间只看到一个未标记的目标图像。在这种情况下,传统的无监督域适应模型通常失败,因为它们不能适应目标域,以具有过度拟合到一个(或几个)目标样本。为了解决这个问题,现有的OSUDA方法通常集成了一种样式传输模块,基于未标记的目标样本执行域随机化,可以在训练期间探讨目标样本周围的多个域。然而,这种样式传输模块依赖于一组额外的图像作为预训练的样式参考,并且还增加了对域适应的内存需求。在这里,我们提出了一种新的奥德达方法,可以有效地缓解这种计算负担。具体而言,我们将多个样式混合层集成到分段器中,该分段器播放样式传输模块的作用,以在不引入任何学习参数的情况下使源图像进行体现。此外,我们提出了一种剪辑的原型匹配(PPM)方法来加权考虑源像素在监督训练期间的重要性,以缓解负适应。实验结果表明,我们的方法在单次设置下的两个常用基准上实现了新的最先进的性能,并且比所有比较方法更有效。
translated by 谷歌翻译
Though convolutional neural networks (CNNs) have demonstrated remarkable ability in learning discriminative features, they often generalize poorly to unseen domains. Domain generalization aims to address this problem by learning from a set of source domains a model that is generalizable to any unseen domain. In this paper, a novel approach is proposed based on probabilistically mixing instancelevel feature statistics of training samples across source domains. Our method, termed MixStyle, is motivated by the observation that visual domain is closely related to image style (e.g., photo vs. sketch images). Such style information is captured by the bottom layers of a CNN where our proposed style-mixing takes place. Mixing styles of training instances results in novel domains being synthesized implicitly, which increase the domain diversity of the source domains, and hence the generalizability of the trained model. MixStyle fits into mini-batch training perfectly and is extremely easy to implement. The effectiveness of MixStyle is demonstrated on a wide range of tasks including category classification, instance retrieval and reinforcement learning.
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
我们建议利用模拟的潜力,以域的概括方式对现实世界自动驾驶场景的语义分割。对分割网络进行了训练,没有任何目标域数据,并在看不见的目标域进行了测试。为此,我们提出了一种新的域随机化和金字塔一致性的方法,以学习具有高推广性的模型。首先,我们建议使用辅助数据集以视觉外观的方式随机将合成图像随机化,以有效地学习域不变表示。其次,我们进一步在不同的“风格化”图像和图像中实施了金字塔一致性,以分别学习域不变和规模不变的特征。关于从GTA和合成对城市景观,BDD和Mapillary的概括进行了广泛的实验;而我们的方法比最新技术取得了卓越的成果。值得注意的是,我们的概括结果与最先进的模拟域适应方法相比甚至更好,甚至比在训练时访问目标域数据的结果。
translated by 谷歌翻译
Domain adaptation aims to bridge the domain shifts between the source and the target domain. These shifts may span different dimensions such as fog, rainfall, etc. However, recent methods typically do not consider explicit prior knowledge about the domain shifts on a specific dimension, thus leading to less desired adaptation performance. In this paper, we study a practical setting called Specific Domain Adaptation (SDA) that aligns the source and target domains in a demanded-specific dimension. Within this setting, we observe the intra-domain gap induced by different domainness (i.e., numerical magnitudes of domain shifts in this dimension) is crucial when adapting to a specific domain. To address the problem, we propose a novel Self-Adversarial Disentangling (SAD) framework. In particular, given a specific dimension, we first enrich the source domain by introducing a domainness creator with providing additional supervisory signals. Guided by the created domainness, we design a self-adversarial regularizer and two loss functions to jointly disentangle the latent representations into domainness-specific and domainness-invariant features, thus mitigating the intra-domain gap. Our method can be easily taken as a plug-and-play framework and does not introduce any extra costs in the inference time. We achieve consistent improvements over state-of-the-art methods in both object detection and semantic segmentation.
translated by 谷歌翻译
Convolutional neural networks (CNNs) have achieved great successes in many computer vision problems. Unlike existing works that designed CNN architectures to improve performance on a single task of a single domain and not generalizable, we present IBN-Net, a novel convolutional architecture, which remarkably enhances a CNN's modeling ability on one domain (e.g. Cityscapes) as well as its generalization capacity on another domain (e.g. GTA5) without finetuning. IBN-Net carefully integrates Instance Normalization (IN) and Batch Normalization (BN) as building blocks, and can be wrapped into many advanced deep networks to improve their performances. This work has three key contributions. (1) By delving into IN and BN, we disclose that IN learns features that are invariant to appearance changes, such as colors, styles, and virtuality/reality, while BN is essential for preserving content related information. (2) IBN-Net can be applied to many advanced deep architectures, such as DenseNet, ResNet, ResNeXt, and SENet, and consistently improve their performance without increasing computational cost. 1 (3) When applying the trained networks to new domains, e.g. from GTA5 to Cityscapes, IBN-Net achieves comparable improvements as domain adaptation methods, even without using data from the target domain. With IBN-Net, we won the 1st place on the WAD 2018 Challenge Drivable Area track, with an mIoU of 86.18%.
translated by 谷歌翻译
在本文中,我们研究了合成到现实域的广义语义分割的任务,该任务旨在学习一个仅使用合成数据的现实场景的强大模型。合成数据和现实世界数据之间的大域移动,包括有限的源环境变化以及合成和现实世界数据之间的较大分布差距,极大地阻碍了看不见的现实现实场景中的模型性能。在这项工作中,我们建议使用样式挂钩的双重一致性学习(Shad)框架来处理此类域转移。具体而言,阴影是基于两个一致性约束,样式一致性(SC)和回顾一致性(RC)构建的。 SC丰富了来源情况,并鼓励模型在样式多样化样本中学习一致的表示。 RC利用现实世界的知识来防止模型过度拟合到合成数据,因此在很大程度上使综合模型和现实世界模型之间的表示一致。此外,我们提出了一个新颖的样式幻觉模块(SHM),以生成对一致性学习至关重要的样式变化样本。 SHM从源分布中选择基本样式,使模型能够在训练过程中动态生成多样化和现实的样本。实验表明,我们的阴影在单个和多源设置上的三个现实世界数据集的平均MIOU的平均MIOU的平均MIOU的平均水平分别优于最先进的方法,并优于最先进的方法。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
最近,由于受监督人员重新识别(REID)的表现不佳,域名概括(DG)人REID引起了很多关注,旨在学习一个不敏感的模型,并可以抵抗域的影响偏见。在本文中,我们首先通过实验验证样式因素是域偏差的重要组成部分。基于这个结论,我们提出了一种样式变量且无关紧要的学习方法(SVIL)方法,以消除样式因素对模型的影响。具体来说,我们在SVIL中设计了样式的抖动模块(SJM)。 SJM模块可以丰富特定源域的样式多样性,并减少各种源域的样式差异。这导致该模型重点关注与身份相关的信息,并对样式变化不敏感。此外,我们将SJM模块与元学习算法有机结合,从而最大程度地提高了好处并进一步提高模型的概括能力。请注意,我们的SJM模块是插件和推理,无需成本。广泛的实验证实了我们的SVIL的有效性,而我们的方法的表现优于DG-REID基准测试的最先进方法。
translated by 谷歌翻译
在实际应用中,高度要求进行语义细分的域概括,在这种应用中,训练有素的模型预计在以前看不见的域中可以很好地工作。一个挑战在于缺乏数据可能涵盖可能看不见的培训领域的各种分布的数据。在本文中,我们提出了一个Web图像辅助域的概括(Wedge)方案,该方案是第一个利用Web爬行图像多样性进行概括的语义细分。为了探索和利用现实世界的数据分布,我们收集了一个网络爬行的数据集,该数据集在天气条件,站点,照明,相机样式等方面呈现出较大的多样性。我们还提出了一种注入Web样式表示的方法 - 将数据编进培训期间的源域中,这使网络能够以可靠的标签体验各种样式的图像,以进行有效的培训。此外,我们使用带有预测的伪标签的Web爬行数据集进行培训,以进一步增强网络的功能。广泛的实验表明,我们的方法显然优于现有的域泛化技术。
translated by 谷歌翻译
人重新识别(RE-ID)在监督场景中取得了巨大成功。但是,由于模型过于适合所见源域,因此很难将监督模型直接传输到任意看不见的域。在本文中,我们旨在从数据增强的角度来解决可推广的多源人员重新ID任务(即,在培训期间看不见测试域,并且在培训期间看不见测试域,因此我们提出了一种新颖的方法,称为Mixnorm,由域感知的混合范围(DMN)和域软件中心正则化(DCR)组成。不同于常规数据增强,提出的域吸引的混合范围化,以增强从神经网络的标准化视图中训练期间特征的多样性,这可以有效地减轻模型过度适应源域,从而提高概括性。在看不见的域中模型的能力。为了更好地学习域不变的模型,我们进一步开发了域吸引的中心正规化,以更好地将产生的各种功能映射到同一空间中。在多个基准数据集上进行的广泛实验验证了所提出的方法的有效性,并表明所提出的方法可以胜过最先进的方法。此外,进一步的分析还揭示了所提出的方法的优越性。
translated by 谷歌翻译
人重新识别(REID)的域概括(DG)是一个具有挑战性的问题,因为在培训过程中无法访问允许的目标域数据。大多数现有的DG REID方法都采用相同的功能来更新功能提取器和分类器参数。这种常见的实践导致模型过度拟合了源域中的现有特征样式,即使使用元学习,也会在目标域上对目标域的概括概括能力。为了解决这个问题,我们提出了一种新型的交织方式学习框架。与传统的学习策略不同,交织的学习结合了两个远期传播和每个迭代的后退传播。我们采用交错样式的功能,使用不同的前向传播来更新功能提取器和分类器,这有助于模型避免过度适应某些域样式。为了充分探索风格交织的学习的优势,我们进一步提出了一种新颖的功能风格化方法来多样化功能样式。这种方法不仅混合了多个培训样本的功能样式,还可以从批处理级别的样式发行中示例新的和有意义的功能样式。广泛的实验结果表明,我们的模型始终优于DG REID大规模基准的最先进方法,从而在计算效率方面具有明显的优势。代码可从https://github.com/wentaotan/interleaved-learning获得。
translated by 谷歌翻译
Domain shift widely exists in the visual world, while modern deep neural networks commonly suffer from severe performance degradation under domain shift due to the poor generalization ability, which limits the real-world applications. The domain shift mainly lies in the limited source environmental variations and the large distribution gap between source and unseen target data. To this end, we propose a unified framework, Style-HAllucinated Dual consistEncy learning (SHADE), to handle such domain shift in various visual tasks. Specifically, SHADE is constructed based on two consistency constraints, Style Consistency (SC) and Retrospection Consistency (RC). SC enriches the source situations and encourages the model to learn consistent representation across style-diversified samples. RC leverages general visual knowledge to prevent the model from overfitting to source data and thus largely keeps the representation consistent between the source and general visual models. Furthermore, we present a novel style hallucination module (SHM) to generate style-diversified samples that are essential to consistency learning. SHM selects basis styles from the source distribution, enabling the model to dynamically generate diverse and realistic samples during training. Extensive experiments demonstrate that our versatile SHADE can significantly enhance the generalization in various visual recognition tasks, including image classification, semantic segmentation and object detection, with different models, i.e., ConvNets and Transformer.
translated by 谷歌翻译
当源(训练)数据和目标(测试)数据之间存在域移动时,深网很容易降级。最近的测试时间适应方法更新了通过流数据部署在新目标环境中的预训练源模型的批归归式层,以减轻这种性能降低。尽管此类方法可以在不首先收集大型目标域数据集的情况下进行调整,但它们的性能取决于流媒体条件,例如迷你批量的大小和类别分布,在实践中可能无法预测。在这项工作中,我们提出了一个框架,以适应几个域的适应性,以应对数据有效适应的实际挑战。具体而言,我们提出了在预训练的源模型中对特征归一化统计量的约束优化,该模型由目标域的小支持集监督。我们的方法易于实现,并改善每类用于分类任务的示例较小的源模型性能。对5个跨域分类和4个语义分割数据集进行了广泛的实验表明,我们的方法比测试时间适应更准确,更可靠,同时不受流媒体条件的约束。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
通过在多个观察到的源极域上培训模型,域概括旨在概括到无需进一步培训的任意看不见的目标领域。现有的作品主要专注于学习域不变的功能,以提高泛化能力。然而,由于在训练期间不可用目标域,因此前面的方法不可避免地遭受源极域中的过度。为了解决这个问题,我们开发了一个有效的基于辍学的框架,可以扩大模型的注意力,这可以有效地减轻过度的问题。特别地,与典型的辍学方案不同,通常在固定层上进行丢失,首先,我们随机选择一层,然后我们随机选择其通道以进行丢弃。此外,我们利用进步方案增加训练期间辍学的比率,这可以逐步提高培训模型的难度,以增强模型的稳健性。此外,为了进一步缓解过度拟合问题的影响,我们利用了在图像级和特征级别的增强方案来产生强大的基线模型。我们对多个基准数据集进行广泛的实验,该数据集显示了我们的方法可以优于最先进的方法。
translated by 谷歌翻译
近年来,语义细分领域取得了巨大进展。但是,剩下的一个具有挑战性的问题是,细分模型并未推广到看不见的域。为了克服这个问题,要么必须标记大量涵盖整个域的数据,这些域通常在实践中是不可行的,要么应用无监督的域适应性(UDA),仅需要标记为源数据。在这项工作中,我们专注于UDA,并另外解决了适应单个域,而且针对一系列目标域的情况。这需要机制,以防止模型忘记其先前学习的知识。为了使细分模型适应目标域,我们遵循利用轻质样式转移将标记的源图像样式转换为目标域样式的想法,同时保留源内容。为了减轻源和目标域之间的分布移位,模型在第二步中在传输的源图像上进行了微调。现有的轻重量样式转移方法依赖于自适应实例归一化(ADAIN)或傅立叶变换仍然缺乏性能,并且在常见数据增强(例如颜色抖动)上没有显着改善。这样做的原因是,这些方法并不关注特定于区域或类别的差异,而是主要捕获最突出的样式。因此,我们提出了一个简单且轻巧的框架,该框架结合了两个类条件的ADAIN层。为了提取传输层所需的特定类目标矩,我们使用未过滤的伪标签,与真实标签相比,我们表明这是有效的近似值。我们在合成序列上广泛验证了我们的方法(CACE),并进一步提出了由真实域组成的具有挑战性的序列。 CACE在视觉和定量上优于现有方法。
translated by 谷歌翻译