组织病理学图像的出现取决于组织类型,染色和数字化过程。这些因素因来源而异,是域转移问题的潜在原因。由于这个问题,尽管深度学习模型在计算病理学中取得了巨大的成功,但在特定领域训练的模型当我们将其应用于另一个领域时,仍可能会表现出色。为了克服这一点,我们提出了一种称为PatchShuffling的新扩展,并为预训练的深度学习模型而被称为Impash的新型自我监视的对比学习框架。使用这些,我们获得了一个RESNET50编码器,该编码器可以提取对域移位抗性的图像表示。我们通过使用其他域普通化技术来比较了我们的派生表示形式,它们通过将它们用于结直肠组织图像的跨域分类。我们表明,所提出的方法优于其他传统的组织学领域适应和最先进的自我监督学习方法。代码可在以下网址获得:https://github.com/trinhvg/impash。
translated by 谷歌翻译
无监督的域自适应人重新识别(重新ID)任务是一个挑战,因为与常规域自适应任务不同,人物重新ID中的源域数据和目标域数据之间没有重叠,这导致一个重要的领域差距。最先进的无监督的RE-ID方法使用基于内存的对比损耗训练神经网络。然而,通过将每个未标记的实例视为类来执行对比学习,作为类将导致阶级冲突的问题,并且由于在存储库中更新时不同类别的实例数量的差异,更新强度是不一致的。为了解决此类问题,我们提出了对人的重新ID的原型字典学习,其能够通过一个训练阶段利用源域数据和目标域数据,同时避免类碰撞问题和群集更新强度不一致的问题原型字典学习。为了减少模型上域间隙的干扰,我们提出了一个本地增强模块,以改善模型的域适应而不增加模型参数的数量。我们在两个大型数据集上的实验证明了原型字典学习的有效性。 71.5 \%地图是在市场到Duke任务中实现的,这是与最先进的无监督域自适应RE-ID方法相比的2.3 \%的改进。它在Duke-to-Market任务中实现了83.9 \%地图,而与最先进的无监督的自适应重新ID方法相比,该任务在4.4 \%中提高了4.4%。
translated by 谷歌翻译
最近对比学习在从未标记数据学习视觉表现方面表现出显着进展。核心思想正在培训骨干,以不变的实例的不同增强。虽然大多数方法只能最大化两个增强数据之间的特征相似性,但我们进一步产生了更具挑战性的训练样本,并强迫模型继续预测这些硬样品上的判别表示。在本文中,我们提出了Mixsiam,传统暹罗网络的混合方法。一方面,我们将实例的两个增强图像输入到骨干,并通过执行两个特征的元素最大值来获得辨别结果。另一方面,我们将这些增强图像的混合物作为输入,并期望模型预测接近鉴别的表示。以这种方式,模型可以访问实例的更多变体数据样本,并继续预测它们的不变判别表示。因此,与先前的对比学习方法相比,学习模型更加强大。大型数据集的广泛实验表明,Mixsiam稳步提高了基线,并通过最先进的方法实现了竞争结果。我们的代码即将发布。
translated by 谷歌翻译
H&E载玻片中的细胞识别是必不可少的先决条件,可以为进一步的病理分析铺平道路,包括组织分类,癌症分级和表型预测。但是,使用深度学习技术执行此类任务需要大型的细胞级注释数据集。尽管以前的研究已经调查了组织分类中对比度自我监督方法的性能,但该类别算法在细胞鉴定和聚类中的实用性仍然未知。在这项工作中,我们通过提出对比度细胞表示学习(CCRL)模型来研究了在细胞聚类中自学学习(SSL)的实用性。通过全面的比较,我们表明该模型可以通过来自不同组织类型的两个数据集的大幅度优于所有当前可用的细胞聚类模型。更有趣的是,结果表明,我们提出的模型在几个单元格类别中运作良好,而SSL模型的实用性主要在具有大量类别的自然图像数据集的背景下显示(例如Imagenet)。本研究中提出的无监督表示学习方法消除了细胞分类任务中数据注释的耗时步骤,这使我们能够在与以前的方法相比更大的数据集上训练我们的模型。因此,考虑到有希望的结果,这种方法可以为自动细胞表示学习打开新的途径。
translated by 谷歌翻译
自我监督的学习(SSL)最近成为特征学习方法中的最爱。因此,它可以吸引域适应方法来考虑结合SSL。直觉是强制执行实例级别一致性,使得预测器在域中变得不变。但是,域适应制度中的大多数现有SSL方法通常被视为独立的辅助组件,使域自适应的签名无人看管。实际上,域间隙消失的最佳区域和SSL PERUSES的实例级别约束可能根本不一致。从这一点来看,我们向一个特定的范式的自我监督学习量身定制,用于域适应,即可转让的对比学习(TCL),这与SSL和所需的跨域转移性相一致地联系起来。我们发现对比学习本质上是一个合适的域适应候选者,因为它的实例不变性假设可以方便地促进由域适应任务青睐的跨域类级不变性。基于特定的记忆库结构和伪标签策略,TCL然后通过清洁和新的对比损失来惩罚源头和靶之间的跨域内域差异。免费午餐是由于纳入对比学习,TCL依赖于移动平均的关键编码器,自然地实现了用于目标数据的伪标签的暂停标签,这避免了无额外的成本。因此,TCL有效地减少了跨域间隙。通过对基准(Office-Home,Visda-2017,Diamet-Five,PACS和Domainnet)进行广泛的实验,用于单源和多源域适配任务,TCL已经证明了最先进的性能。
translated by 谷歌翻译
在过去几年中,无监督的学习取得了很大的进展,特别是通过对比的自我监督学习。用于基准测试自我监督学习的主导数据集已经想象,最近的方法正在接近通过完全监督培训实现的性能。然而,ImageNet DataSet在很大程度上是以对象为中心的,并且目前尚不清楚这些方法的广泛不同的数据集和任务,这些方法是非以对象为中心的,例如数字病理学。虽然自我监督的学习已经开始在这个领域探讨了令人鼓舞的结果,但有理由看起来更接近这个环境与自然图像和想象成的不同。在本文中,我们对组织病理学进行了对比学学习的深入分析,引脚指向对比物镜的表现如何不同,由于组织病理学数据的特征。我们提出了一些考虑因素,例如对比目标和超参数调整的观点。在大量的实验中,我们分析了组织分类的下游性能如何受到这些考虑因素的影响。结果指出了对比学习如何减少数字病理中的注释工作,但需要考虑特定的数据集特征。为了充分利用对比学习目标,需要不同的视野和超参数校准。我们的结果为实现组织病理学应用的自我监督学习的全部潜力铺平了道路。
translated by 谷歌翻译
当前有监督的跨域图像检索方法可以实现出色的性能。但是,数据收集和标签的成本施加了在实际应用程序中实践部署的棘手障碍。在本文中,我们研究了无监督的跨域图像检索任务,其中类标签和配对注释不再是训练的先决条件。这是一项极具挑战性的任务,因为没有对内域特征表示学习和跨域对准的监督。我们通过引入:1)一种新的群体对比度学习机制来应对这两个挑战,以帮助提取班级语义感知特征,以及2)新的距离距离损失,以有效地测量并最大程度地减少域差异而无需任何外部监督。在办公室和域名数据集上进行的实验始终显示出与最先进方法相比,我们的框架的出色图像检索精度。我们的源代码可以在https://github.com/conghuihu/ucdir上找到。
translated by 谷歌翻译
现有人重新识别(Reid)方法通常直接加载预先训练的ImageNet权重以进行初始化。然而,作为一个细粒度的分类任务,Reid更具挑战性,并且存在于想象成分类之间的大域差距。在本文中,通过自我监督的代表性的巨大成功的巨大成功,在本文中,我们为基于对比学习(CL)管道的对比训练,为REID设计了一个无人监督的训练框架,被称为上限。在预培训期间,我们试图解决学习细粒度的重点问题的两个关键问题:(1)CL流水线中的增强可能扭曲人物图像中的鉴别条款。 (2)未完全探索人物图像的细粒度局部特征。因此,我们在Up-Reid中引入了一个身份内 - 身份(i $ ^ 2 $ - )正则化,该正常化是从全局图像方面和本地补丁方面的两个约束:在增强和原始人物图像之间强制强制实施全局一致性为了增加增强的稳健性,而使用每个图像的本地斑块之间的内在对比度约束来完全探索局部鉴别的线索。在多个流行的RE-ID数据集上进行了广泛的实验,包括PersonX,Market1501,CuHK03和MSMT17,表明我们的上部Reid预训练模型可以显着使下游REID微调和实现最先进的性能。代码和模型将被释放到https://github.com/frost-yang-99/up -reid。
translated by 谷歌翻译
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive selfsupervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by Sim-CLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-ofthe-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100× fewer labels. 1
translated by 谷歌翻译
Humans view the world through many sensory channels, e.g., the long-wavelength light channel, viewed by the left eye, or the high-frequency vibrations channel, heard by the right ear. Each view is noisy and incomplete, but important factors, such as physics, geometry, and semantics, tend to be shared between all views (e.g., a "dog" can be seen, heard, and felt). We investigate the classic hypothesis that a powerful representation is one that models view-invariant factors. We study this hypothesis under the framework of multiview contrastive learning, where we learn a representation that aims to maximize mutual information between different views of the same scene but is otherwise compact. Our approach scales to any number of views, and is viewagnostic. We analyze key properties of the approach that make it work, finding that the contrastive loss outperforms a popular alternative based on cross-view prediction, and that the more views we learn from, the better the resulting representation captures underlying scene semantics. Our approach achieves state-of-the-art results on image and video unsupervised learning benchmarks.
translated by 谷歌翻译
局部表示学习是促进组织病理学整体幻灯片图像分析的性能的关键挑战。先前的表示学习方法遵循监督学习范式。但是,大规模WSIS的手动注释是耗时且劳动力密集的。因此,自我监督的对比学习最近引起了密集的关注。目前的对比学习方法将每个样本视为一个类别,这遭受了类碰撞问题,尤其是在组织病理学图像分析的领域。在本文中,我们提出了一个新颖的对比表示学习框架,称为病变感染对比学习(LACL),用于组织病理学整个幻灯片图像分析。我们基于内存库结构建立了病变队列,以存储不同类别WSIS的表示形式,这使对比模型可以在训练过程中选择性定义负面对。此外,我们设计了一个队列改进策略,以净化病变队列中存储的表示形式。实验结果表明,LACL在不同数据集上学习在组织病理学图像表示学习中的最佳性能,并且在不同的WSI分类基准下的最先进方法优于最先进的方法。该代码可在https://github.com/junl21/lacl上获得。
translated by 谷歌翻译
Contrastive learning has become a key component of self-supervised learning approaches for computer vision. By learning to embed two augmented versions of the same image close to each other and to push the embeddings of different images apart, one can train highly transferable visual representations. As revealed by recent studies, heavy data augmentation and large sets of negatives are both crucial in learning such representations. At the same time, data mixing strategies, either at the image or the feature level, improve both supervised and semi-supervised learning by synthesizing novel examples, forcing networks to learn more robust features. In this paper, we argue that an important aspect of contrastive learning, i.e. the effect of hard negatives, has so far been neglected. To get more meaningful negative samples, current top contrastive self-supervised learning approaches either substantially increase the batch sizes, or keep very large memory banks; increasing memory requirements, however, leads to diminishing returns in terms of performance. We therefore start by delving deeper into a top-performing framework and show evidence that harder negatives are needed to facilitate better and faster learning. Based on these observations, and motivated by the success of data mixing, we propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead. We exhaustively ablate our approach on linear classification, object detection, and instance segmentation and show that employing our hard negative mixing procedure improves the quality of visual representations learned by a state-of-the-art self-supervised learning method.Project page: https://europe.naverlabs.com/mochi 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
目前,跨景元的高光谱图像(HSI)分类引起了人们的注意。当需要实时处理TD且不能重复使用训练时,必须仅在源域(SD)上训练模型(SD)并将模型直接传输到目标域(TD)。基于域概括的思想,开发了单源域扩展网络(SDENET),以确保域扩展的可靠性和有效性。该方法使用生成的对抗学习在SD中训练和TD测试。包括语义编码器和MORPH编码器在内的发电机旨在基于编码器随机化架构生成扩展域(ED),其中空间和频谱随机化专门用于生成可变的空间和光谱信息,并隐含形态知识。作为域扩展过程中的域不变信息。此外,受监督的对比学习被采用在歧视者中,以学习阶级领域不变的表示,该表示驱动了SD和ED的阶级样本。同时,对抗性训练旨在优化发电机以驱动SD和ED的阶级样品进行分离。与最先进的技术相比,在两个公共HSI数据集和另一个多光谱图像(MSI)数据集上进行了广泛的实验,证明了该方法的优越性。
translated by 谷歌翻译
我们考虑在给定的分类任务(例如Imagenet-1k(IN1K))上训练深神网络的问题,以便它在该任务以及其他(未来)转移任务方面擅长。这两个看似矛盾的属性在改善模型的概括的同时保持其在原始任务上的性能之间实现了权衡。接受自我监督学习训练的模型(SSL)倾向于比其受监督的转移学习更好地概括。但是,他们仍然落后于In1k上的监督模型。在本文中,我们提出了一个有监督的学习设置,以利用两全其美的方式。我们使用最近的SSL模型的两个关键组成部分丰富了普通的监督培训框架:多尺度农作物用于数据增强和使用可消耗的投影仪。我们用内存库在即时计算的类原型中代替了班级权重的最后一层。我们表明,这三个改进导致IN1K培训任务和13个转移任务之间的权衡取决于更加有利的权衡。在所有探索的配置中,我们都会挑出两种模型:T-Rex实现了转移学习的新状态,并且超过了In1k上的Dino和Paws等最佳方法,以及与高度优化的RSB--相匹配的T-Rex*在IN1K上的A1模型,同时在转移任务上表现更好。项目页面和预估计的模型:https://europe.naverlabs.com/t-rex
translated by 谷歌翻译
自我监督的学习最近在没有人类注释的情况下在表示学习方面取得了巨大的成功。主要方法(即对比度学习)通常基于实例歧视任务,即单个样本被视为独立类别。但是,假定所有样品都是不同的,这与普通视觉数据集中类似样品的自然分组相矛盾,例如同一狗的多个视图。为了弥合差距,本文提出了一种自适应方法,该方法引入了软样本间关系,即自适应软化对比度学习(ASCL)。更具体地说,ASCL将原始实例歧视任务转换为多实体软歧视任务,并自适应地引入样本间关系。作为现有的自我监督学习框架的有效简明的插件模块,ASCL就性能和效率都实现了多个基准的最佳性能。代码可从https://github.com/mrchenfeng/ascl_icpr2022获得。
translated by 谷歌翻译
概括跨越不同视觉域的学习表现的能力,例如在真正的照片,剪贴画,绘画和草图之间是人类视觉系统的基本容量。在本文中,不同于利用一些(或全部)源域监控的大多数跨域工作,我们接近一个相对较新的,非常实用的无监督域泛化(UDG)设置在既不源也不在源域中没有培训监督。我们的方法是基于跨域(BRAD)的桥梁​​的自我监督学习 - 辅助桥域附有一组从每个训练域的Brad将视觉(图像到图像)映射保留的一组语义。 BRAD和MAPPAPAPPED(端到端)与对比的自我监督表示模型一起学习(端到端),其用语义对齐每个域将每个域对齐,因此隐含地驱动所有域(见或看不见)语义上彼此对齐。在这项工作中,我们展示了如何使用边缘正则化的布拉德,我们的方法在多个基准和一系列任务中实现了显着的增益,包括UDG,少量UDA和跨多个域数据集的无监督概括(包括指向未经看明域的概念和课程)。
translated by 谷歌翻译
尽管增加了大量的增强家庭,但只有几个樱桃采摘的稳健增强政策有利于自我监督的图像代表学习。在本文中,我们提出了一个定向自我监督的学习范式(DSSL),其与显着的增强符号兼容。具体而言,我们在用标准增强的视图轻度增强后调整重增强策略,以产生更难的视图(HV)。 HV通常具有与原始图像较高的偏差而不是轻度增强的标准视图(SV)。与以前的方法不同,同等对称地将所有增强视图对称地最大化它们的相似性,DSSL将相同实例的增强视图视为部分有序集(具有SV $ \ LeftrightArrow $ SV,SV $ \左路$ HV),然后装备一个定向目标函数尊重视图之间的衍生关系。 DSSL可以轻松地用几行代码实现,并且对于流行的自我监督学习框架非常灵活,包括SIMCLR,Simsiam,Byol。对CiFar和Imagenet的广泛实验结果表明,DSSL可以稳定地改善各种基线,其兼容性与更广泛的增强。
translated by 谷歌翻译
主流最先进的域泛化算法倾向于优先考虑跨域语义不变性的假设。同时,固有的域内风格不变性通常被低估并放在架子上。在本文中,我们揭示了利用域内风格的不变性,在提高域泛化效率方面也具有关键重要性。我们验证了网络对域功能不变并在实例之间共享的内容至关重要,以便网络锐化其理解并提高其语义判别能力。相应地,我们还提出了一种新颖的“陪审团”机制,在域之间学习有用的语义特征共性特别有效。我们的完整型号称为Steam可以被解释为新颖的概率图形模型,该图形模型需要方便的两种内存库的方便结构:语义特征银行和风格的功能库。经验结果表明,我们的拟议框架通过清晰的边缘超越了最先进的方法。
translated by 谷歌翻译
学习时间序列表示只有未标记的数据或几个标签样本可用时,可能是一项具有挑战性的任务。最近,通过对比,通过对比的不同数据观点从未标记的数据中提取有用的表示形式方面,对对比的自我监督学习表现出了很大的改进。在这项工作中,我们通过时间和上下文对比(TS-TCC)提出了一个新颖的时间序列表示学习框架,该框架从未标记的数据中学习了具有对比性学习的无标记数据的表示。具体而言,我们建议时间序列特定的弱和强大的增强,并利用他们的观点在拟议的时间对比模块中学习稳健的时间关系,除了通过我们提出的上下文对比模块学习判别性表示。此外,我们对时间序列数据增强选择进行系统研究,这是对比度学习的关键部分。我们还将TS-TCC扩展到了半监督的学习设置,并提出了一种类感知的TS-TCC(CA-TCC),从可用的少数标​​记数据中受益,以进一步改善TS-TCC学到的表示。具体而言,我们利用TS-TCC生成的强大伪标签来实现班级感知的对比损失。广泛的实验表明,对我们提议的框架所学的功能的线性评估与完全监督的培训相当。此外,我们的框架在少数标记的数据和转移学习方案中显示出高效率。该代码可在\ url {https://github.com/emadeldeen24/ts-tcc}上公开获得。
translated by 谷歌翻译
对于人工学习系统,随着时间的流逝,从数据流进行持续学习至关重要。对监督持续学习的新兴研究取得了长足的进步,而无监督学习中灾难性遗忘的研究仍然是空白的。在无监督的学习方法中,自居民学习方法在视觉表示上显示出巨大的潜力,而无需大规模标记的数据。为了改善自我监督学习的视觉表示,需要更大和更多的数据。在现实世界中,始终生成未标记的数据。这种情况为学习自我监督方法提供了巨大的优势。但是,在当前的范式中,将先前的数据和当前数据包装在一起并再次培训是浪费时间和资源。因此,迫切需要一种持续的自我监督学习方法。在本文中,我们首次尝试通过提出彩排方法来实现连续的对比自我监督学习,从而使以前的数据保持了一些典范。我们通过模仿旧网络通过一组保存的示例,通过模仿旧网络推断出的相似性分数分布,而不是将保存的示例与当前数据集结合到当前的培训数据集,而是利用自我监督的知识蒸馏将对比度信息传输到当前网络。此外,我们建立一个额外的样本队列,以帮助网络区分以前的数据和当前数据并在学习自己的功能表示时防止相互干扰。实验结果表明,我们的方法在CIFAR100和Imagenet-Sub上的性能很好。与基线的学习任务无需采用任何技术,我们将图像分类在CIFAR100上提高了1.60%,Imagenet-Sub上的2.86%,在10个增量步骤设置下对Imagenet-Full进行1.29%。
translated by 谷歌翻译