现有人重新识别(Reid)方法通常直接加载预先训练的ImageNet权重以进行初始化。然而,作为一个细粒度的分类任务,Reid更具挑战性,并且存在于想象成分类之间的大域差距。在本文中,通过自我监督的代表性的巨大成功的巨大成功,在本文中,我们为基于对比学习(CL)管道的对比训练,为REID设计了一个无人监督的训练框架,被称为上限。在预培训期间,我们试图解决学习细粒度的重点问题的两个关键问题:(1)CL流水线中的增强可能扭曲人物图像中的鉴别条款。 (2)未完全探索人物图像的细粒度局部特征。因此,我们在Up-Reid中引入了一个身份内 - 身份(i $ ^ 2 $ - )正则化,该正常化是从全局图像方面和本地补丁方面的两个约束:在增强和原始人物图像之间强制强制实施全局一致性为了增加增强的稳健性,而使用每个图像的本地斑块之间的内在对比度约束来完全探索局部鉴别的线索。在多个流行的RE-ID数据集上进行了广泛的实验,包括PersonX,Market1501,CuHK03和MSMT17,表明我们的上部Reid预训练模型可以显着使下游REID微调和实现最先进的性能。代码和模型将被释放到https://github.com/frost-yang-99/up -reid。
translated by 谷歌翻译
蒙面图像建模(MIM)在各种视觉任务上取得了令人鼓舞的结果。但是,学到的表示形式的有限可区分性表现出来,使一个更强大的视力学习者还有很多值得一试。为了实现这一目标,我们提出了对比度蒙面的自动编码器(CMAE),这是一种新的自我监督的预训练方法,用于学习更全面和有能力的视觉表示。通过详细统一的对比度学习(CL)和掩盖图像模型(MIM),CMAE利用了它们各自的优势,并以强大的实例可辨别性和局部的可感知来学习表示形式。具体而言,CMAE由两个分支组成,其中在线分支是不对称的编码器编码器,而目标分支是动量更新的编码器。在培训期间,在线编码器从蒙面图像的潜在表示中重建了原始图像,以学习整体特征。馈送完整图像的目标编码器通过其在线学习通过对比度学习增强了功能可区分性。为了使CL与MIM兼容,CMAE引入了两个新组件,即用于生成合理的正视图和特征解码器的像素移位,以补充对比度对的特征。多亏了这些新颖的设计,CMAE可以有效地提高了MIM对应物的表示质量和转移性能。 CMAE在图像分类,语义分割和对象检测的高度竞争基准上实现了最先进的性能。值得注意的是,CMAE-BASE在Imagenet上获得了$ 85.3 \%$ $ TOP-1的准确性和$ 52.5 \%$ MIOU的ADE20K,分别超过了$ 0.7 \%\%$ $和$ 1.8 \%$ $。代码将公开可用。
translated by 谷歌翻译
与基于现代聚类算法的完全监督的REID方法相比,未经监督的人重新识别(U-Reid)最近达到了竞争性能。然而,这种基于聚类的方案对大规模数据集来说变得对计算方式。如何探讨如何有效利用具有有限计算资源的无限未标记的数据,以便更好地进行更好的U-Reid。在本文中,我们首次尝试大规模U-Reid并提出一个“大型任务的小数据”范式被称为Meta聚类学习(MCL)。 MCL仅通过群集伪标记整个未标记数据的子集,以节省第一期训练的计算。之后,被学习的集群中心称为我们的MCL中的元原型,被视为代理注释器,以便轻松注释其它未标记数据以进一步抛光模型。为了缓解抛光阶段的潜在嘈杂的标签问题,我们强制执行两个精心设计的损失限制,以保证境内统一的一致性和相互识别的强烈相关性。对于多个广泛使用的U-REID基准测试,我们的方法显着节省了计算成本,同时与先前作品相比,实现了可比或更好的性能。
translated by 谷歌翻译
在亲自重新识别(REID)中,最近的研究已经验证了未标记的人图像上的模型的预训练要比ImageNet上要好得多。但是,这些研究直接应用了为图像分类设计的现有自我监督学习(SSL)方法,用于REID,而无需在框架中进行任何适应。这些SSL方法将本地视图的输出(例如红色T恤,蓝色短裤)与同时的全球视图相匹配,从而丢失了很多细节。在本文中,我们提出了一种特定于REID的预训练方法,部分意识的自我监督预训练(PASS),该方法可以生成零件级别的功能以提供细粒度的信息,并且更适合REID。通行证将图像分为几个局部区域,每个区域随机裁剪的本地视图都有特定的可学习[部分]令牌。另一方面,所有地方区域的[部分]也附加到全球视图中。通行证学习以匹配同一[部分]上本地视图的输出和全局视图。也就是说,从本地区域获得的本地视图的[部分]仅与从全球视图中学到的相应[部分]相匹配。结果,每个[部分]可以专注于图像的特定局部区域,并提取该区域的细粒度信息。实验显示通行证在Market1501和MSMT17上的新最先进的表演以及各种REID任务(例如Vanilla vit-s/16)通过Pass Achieves 92.2 \%/90.2 \%/88.5 \%地图准确性,例如Vanilla vit-s/16在Market1501上进行监督/UDA/USL REID。我们的代码可在https://github.com/casia-iva-lab/pass-reid上找到。
translated by 谷歌翻译
In contrastive self-supervised learning, the common way to learn discriminative representation is to pull different augmented "views" of the same image closer while pushing all other images further apart, which has been proven to be effective. However, it is unavoidable to construct undesirable views containing different semantic concepts during the augmentation procedure. It would damage the semantic consistency of representation to pull these augmentations closer in the feature space indiscriminately. In this study, we introduce feature-level augmentation and propose a novel semantics-consistent feature search (SCFS) method to mitigate this negative effect. The main idea of SCFS is to adaptively search semantics-consistent features to enhance the contrast between semantics-consistent regions in different augmentations. Thus, the trained model can learn to focus on meaningful object regions, improving the semantic representation ability. Extensive experiments conducted on different datasets and tasks demonstrate that SCFS effectively improves the performance of self-supervised learning and achieves state-of-the-art performance on different downstream tasks.
translated by 谷歌翻译
To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning (DenseCL), which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation.
translated by 谷歌翻译
最近的蒙版图像建模(MIM)在自我监督学习(SSL)中受到了很多关注,该学习要求目标模型恢复输入图像的掩盖部分。尽管基于MIM的预训练方法在转移到许多下游任务时达到了新的最新性能,但可视化表明,与基于基于对比性学习预训练相比,学习的表示形式不可分割,尤其是相比。这激发了我们思考MIM预培训表示的线性可分离性是否可以进一步改善,从而改善了训练的性能。由于MIM和对比度学习倾向于利用不同的数据增强和培训策略,因此将这两个借口任务结合起来并不是微不足道的。在这项工作中,我们提出了一个新颖而灵活的预训练框架,名为Mimco,该框架通过两阶段的预培训结合了MIM和对比度学习。具体而言,MIMCO将预先训练的对比学习模型作为教师模型,并通过两种类型的学习目标进行了预培训:贴片级和图像级的重建损失。关于下游任务的广泛转移实验证明了我们的MIMCO预训练框架的出色表现。以VIT-S为例,当使用预先训练的MoCov3-Vit-S作为教师模型时,Mimco只需要100个时期的预训练时期即可达到Imagenet-1K上的82.53%Top-1 FineTuning精度,这表现优于表现最先进的自我监督学习对手。
translated by 谷歌翻译
局部表示学习是促进组织病理学整体幻灯片图像分析的性能的关键挑战。先前的表示学习方法遵循监督学习范式。但是,大规模WSIS的手动注释是耗时且劳动力密集的。因此,自我监督的对比学习最近引起了密集的关注。目前的对比学习方法将每个样本视为一个类别,这遭受了类碰撞问题,尤其是在组织病理学图像分析的领域。在本文中,我们提出了一个新颖的对比表示学习框架,称为病变感染对比学习(LACL),用于组织病理学整个幻灯片图像分析。我们基于内存库结构建立了病变队列,以存储不同类别WSIS的表示形式,这使对比模型可以在训练过程中选择性定义负面对。此外,我们设计了一个队列改进策略,以净化病变队列中存储的表示形式。实验结果表明,LACL在不同数据集上学习在组织病理学图像表示学习中的最佳性能,并且在不同的WSI分类基准下的最先进方法优于最先进的方法。该代码可在https://github.com/junl21/lacl上获得。
translated by 谷歌翻译
步态描绘了个人独特而区别的步行模式,并已成为人类识别最有希望的生物识别特征之一。作为一项精细的识别任务,步态识别很容易受到许多因素的影响,并且通常需要大量完全注释的数据,这些数据是昂贵且无法满足的。本文提出了一个大规模的自我监督基准,以通过对比度学习进行步态识别,旨在通过提供信息丰富的步行先验和各种现实世界中的多样化的变化,从大型的无标记的步行视频中学习一般步态代表。具体而言,我们收集了一个由1.02m步行序列组成的大规模的无标记的步态数据集gaitu-1m,并提出了一个概念上简单而经验上强大的基线模型步态。在实验上,我们在四个广泛使用的步态基准(Casia-B,Ou-Mvlp,Grew and Grew and Gait3d)上评估了预训练的模型,或者在不转移学习的情况下。无监督的结果与基于早期模型和基于GEI的早期方法相当甚至更好。在转移学习后,我们的方法在大多数情况下都超过现有方法。从理论上讲,我们讨论了步态特异性对比框架的关键问题,并提供了一些进一步研究的见解。据我们所知,Gaitlu-1M是第一个大规模未标记的步态数据集,而GaitSSB是第一种在上述基准测试基准上取得显着无监督结果的方法。 GaitSSB的源代码将集成到OpenGait中,可在https://github.com/shiqiyu/opengait上获得。
translated by 谷歌翻译
最近对比学习在从未标记数据学习视觉表现方面表现出显着进展。核心思想正在培训骨干,以不变的实例的不同增强。虽然大多数方法只能最大化两个增强数据之间的特征相似性,但我们进一步产生了更具挑战性的训练样本,并强迫模型继续预测这些硬样品上的判别表示。在本文中,我们提出了Mixsiam,传统暹罗网络的混合方法。一方面,我们将实例的两个增强图像输入到骨干,并通过执行两个特征的元素最大值来获得辨别结果。另一方面,我们将这些增强图像的混合物作为输入,并期望模型预测接近鉴别的表示。以这种方式,模型可以访问实例的更多变体数据样本,并继续预测它们的不变判别表示。因此,与先前的对比学习方法相比,学习模型更加强大。大型数据集的广泛实验表明,Mixsiam稳步提高了基线,并通过最先进的方法实现了竞争结果。我们的代码即将发布。
translated by 谷歌翻译
数据增强模块用于对比学习将给定的数据示例转换为两个视图,这被认为是必不可少的且不可替代的。但是,多个数据增强的预定组成带来了两个缺点。首先,增强类型的人工选择为模型带来了特定的代表性不变,它们对不同的下游任务具有不同程度的积极和负面影响。在培训期间,平等处理每种类型的增强性,使该模型学习了各种下游任务的非最佳表示,并限制了事先选择增强类型的灵活性。其次,在经典的对比度学习方法中使用的强大数据增强可能会在某些情况下带来太多的不变性,而对于某些下游任务至关重要的细粒度可能会丢失。本文提出了一种通用方法,以考虑在一般的对比学习框架中考虑在何处以及与什么对比来减轻这两个问题。我们首先建议根据每个数据增强的重要性,在模型的不同深度学习不同的增强不变,而不是在骨干中均匀学习代表性不变。然后,我们建议用增强嵌入扩展对比内容,以减少强大数据增强的误导效果。基于几种基线方法的实验表明,我们在分类,检测和分割下游任务上学习更好的各种基准。
translated by 谷歌翻译
虽然RGB-Infrared跨型号人重新识别(RGB-IR Reid)在24小时智能监测中启用了巨大进展,但最先进的仍然严重依赖于微调想象的预先训练的网络。由于单模性质,这种大规模的预训练可以产生逆向模态图像检索性能的RGB偏置的表示。本文介绍了一个自我监督的预训练替代品,命名为模态感知多个粒度学习(MMGL),该学习(MMGL)直接从划痕上培训模型,而是在没有外部数据和复杂的调整技巧的情况下实现竞争结果。具体而言,MMGL将RGB-IR图像映射到共享潜在置换空间中,通过最大化循环 - 一致的RGB-IR图像补片之间的协议,进一步提高了局部辨别性。实验表明,MMGL在更快的训练速度(几小时内收敛)和求解数据效率(<5%数据大小)比想象预先训练更好地了解更好的表示(+ 6.47%的秩1)。结果还表明它概括为各种现有模型,损失,并且在数据集中具有有希望的可转换性。代码将被释放。
translated by 谷歌翻译
对比度学习最近在无监督的视觉表示学习中显示出巨大的潜力。在此轨道中的现有研究主要集中于图像内不变性学习。学习通常使用丰富的图像内变换来构建正对,然后使用对比度损失最大化一致性。相反,相互影响不变性的优点仍然少得多。利用图像间不变性的一个主要障碍是,尚不清楚如何可靠地构建图像间的正对,并进一步从它们中获得有效的监督,因为没有配对注释可用。在这项工作中,我们提出了一项全面的实证研究,以更好地了解从三个主要组成部分的形象间不变性学习的作用:伪标签维护,采样策略和决策边界设计。为了促进这项研究,我们引入了一个统一的通用框架,该框架支持无监督的内部和间形内不变性学习的整合。通过精心设计的比较和分析,揭示了多个有价值的观察结果:1)在线标签收敛速度比离线标签更快; 2)半硬性样品比硬否定样品更可靠和公正; 3)一个不太严格的决策边界更有利于形象间的不变性学习。借助所有获得的食谱,我们的最终模型(即InterCLR)对多个标准基准测试的最先进的内图内不变性学习方法表现出一致的改进。我们希望这项工作将为设计有效的无监督间歇性不变性学习提供有用的经验。代码:https://github.com/open-mmlab/mmselfsup。
translated by 谷歌翻译
自我监督的方法(SSL)通过最大化两个增强视图之间的相互信息,裁剪是一种巨大的成功,其中裁剪是一种流行的增强技术。裁剪区域广泛用于构造正对,而裁剪后的左侧区域很少被探讨在现有方法中,尽管它们在一起构成相同的图像实例并且两者都有助于对类别的描述。在本文中,我们首次尝试从完整的角度来展示两种地区的重要性,并提出称为区域对比学习(RegionCl)的简单但有效的借口任务。具体地,给定两个不同的图像,我们随机从具有相同大小的每个图像随机裁剪区域(称为粘贴视图)并将它们交换以分别与左区域(称为CANVAS视图)一起组成两个新图像。然后,可以根据以下简单标准提供对比度对,即,每个视图是(1)阳性,其视图从相同的原始图像增强,并且与从其他图像增强的视图增强的视图。对于对流行的SSL方法进行微小的修改,RegionCL利用这些丰富的对并帮助模型区分来自画布和粘贴视图的区域特征,因此学习更好的视觉表示。 Imagenet,Coco和Citycapes上的实验表明,RegionCL通过大型边缘改善Moco V2,Densecl和Simsiam,并在分类,检测和分割任务上实现最先进的性能。代码将在https://github.com/annbless/regioncl.git上获得。
translated by 谷歌翻译
无监督的域自适应人重新识别(重新ID)任务是一个挑战,因为与常规域自适应任务不同,人物重新ID中的源域数据和目标域数据之间没有重叠,这导致一个重要的领域差距。最先进的无监督的RE-ID方法使用基于内存的对比损耗训练神经网络。然而,通过将每个未标记的实例视为类来执行对比学习,作为类将导致阶级冲突的问题,并且由于在存储库中更新时不同类别的实例数量的差异,更新强度是不一致的。为了解决此类问题,我们提出了对人的重新ID的原型字典学习,其能够通过一个训练阶段利用源域数据和目标域数据,同时避免类碰撞问题和群集更新强度不一致的问题原型字典学习。为了减少模型上域间隙的干扰,我们提出了一个本地增强模块,以改善模型的域适应而不增加模型参数的数量。我们在两个大型数据集上的实验证明了原型字典学习的有效性。 71.5 \%地图是在市场到Duke任务中实现的,这是与最先进的无监督域自适应RE-ID方法相比的2.3 \%的改进。它在Duke-to-Market任务中实现了83.9 \%地图,而与最先进的无监督的自适应重新ID方法相比,该任务在4.4 \%中提高了4.4%。
translated by 谷歌翻译
现有的深度聚类方法依赖于对比学习的对比学习,这需要否定例子来形成嵌入空间,其中所有情况都处于良好分离状态。但是,否定的例子不可避免地引起阶级碰撞问题,损害了群集的表示学习。在本文中,我们探讨了对深度聚类的非对比表示学习,被称为NCC,其基于Byol,一种没有负例的代表性方法。首先,我们建议将一个增强的实例与嵌入空间中的另一个视图的邻居对齐,称为正抽样策略,该域避免了由否定示例引起的类碰撞问题,从而提高了集群内的紧凑性。其次,我们建议鼓励在所有原型中的一个原型和均匀性的两个增强视图之间的对准,命名的原型是原型的对比损失或protocl,这可以最大化簇间距离。此外,我们在期望 - 最大化(EM)框架中制定了NCC,其中E-Step利用球面K手段来估计实例的伪标签和来自目标网络的原型的分布,并且M-Step利用了所提出的损失优化在线网络。结果,NCC形成了一个嵌入空间,其中所有集群都处于分离良好,而内部示例都很紧凑。在包括ImageNet-1K的几个聚类基准数据集上的实验结果证明了NCC优于最先进的方法,通过显着的余量。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
基于对比的学习的预培训的目标是利用大量的未标记数据来产生可以容易地调整下游的模型。电流方法围绕求解图像辨别任务:给定锚图像,该图像的增强对应物和一些其他图像,该模型必须产生表示,使得锚和其对应物之间的距离很小,并且锚和其他图像很大。这种方法存在两个重要问题:(i)通过对比图像级别的表示,很难生成有利于下游对象级任务(如实例分段)的详细对象敏感功能; (ii)制造增强对应的增强策略是固定的,在预培训的后期阶段做出更低的学习。在这项工作中,我们引入课程对比对象级预培训(CCOP)来解决这些问题:(i)我们使用选择性搜索来查找粗略对象区域并使用它们构建图像间对象级对比度损耗和一个图像内对象级别歧视损失进入我们的预训练目标; (ii)我们提出了一种课程学习机制,其自适应地增强所生成的区域,这允许模型一致地获取有用的学习信号,即使在预训练的后期阶段也是如此。我们的实验表明,当在多对象场景图像数据集上进行预训练时,我们的方法通过大量对象级任务的大幅度提高了MoCo V2基线。代码可在https://github.com/chenhongyiyang/ccop中找到。
translated by 谷歌翻译
由于开发更有效的对比学习方法,最近的学习最近取得了特殊的进展。然而,CNNS容易依赖于人类认为非语义的低级特征。据推测这种依赖性促使图像扰动或域移位缺乏鲁棒性。在本文中,我们表明,通过仔细设计的负样本,对比学习可以了解更强大的表现形式,较少依赖这些特征。对比度学习利用正对对保存语义信息的同时在训练图像中扰乱肤浅的特征。类似地,我们建议以反向的方式产生负样本,其中仅保留多余的代言特征。我们开发两种方法,基于纹理和基于补丁的增强,以生成负样本。这些样品达到更好的泛化,尤其是在域外设置下。我们还分析了我们的方法和生成的基于纹理的样本,显示纹理特征在分类特定的ImageNet类以及尤其更精细的类中是必不可少的。我们还表明,在不同的测试设置下,模型偏见有利于纹理和形状不同。我们的代码,培训的模型和想象的纹理数据集可以在https://github.com/songsoneige/contrastive-learning-with-non-semantic-negatiens找到。
translated by 谷歌翻译
在计算病理学工作流程中检测和分裂ObjectSwithinWholesLideImagesis。自我监督学习(SSL)吸引了这种重度注释的任务。尽管自然图像的密集任务具有广泛的基准,但不幸的是,在当前的病理学作品中,此类研究仍然没有。我们的论文打算缩小这一差距。我们首先基于病理图像中密集预测任务的代表性SSL方法。然后,我们提出了概念对比学习(结论),这是密集预训练的SSL框架。我们探讨了结论如何使用不同来源提供的概念,并最终提出了一种简单的无依赖性概念生成方法,该方法不依赖于外部分割算法或显着检测模型。广泛的实验表明,在不同环境中,结论比以前的最新SSL方法具有优势。沿着我们的探索,我们弥补了几个重要而有趣的组成部分,这有助于致力于病理图像的密集预训练。我们希望这项工作可以提供有用的数据点,并鼓励社区为感兴趣的问题进行结论预培训。代码可用。
translated by 谷歌翻译