理想情况下,应概遍的视觉学习算法,用于在新目标环境中部署时处理任何看不见的域移位;和数据效率,通过使用尽可能少的标签来降低开发成本。为此,我们研究半监督域泛化(SSDG),旨在使用多源,部分标记的培训数据学习域广泛的模型。我们设计了两个基准,涵盖了两个相关领域,即域泛化(DG)和半监督学习(SSL)开发的最先进方法。我们发现,通过设计无法处理未标记数据的DG方法,在SSDG中使用有限的标签表现不佳; SSL方法,尤其是FixMatch,获得更好的结果,但仍远离使用完整标签培训的基本vanilla模型。我们提出了一种简单的方法,一种简单的方法,将FixMatch扩展到SSDG的几个新成分:1)随机模型,用于减少稀缺标签的过度拟合,2)多视图一致性学习,用于增强域泛化。尽管设计简洁,StyleAtch可以实现SSDG的显着改进。我们希望我们的方法和全面的基准可以为未来的概括和数据高效学习系统进行铺平。源代码以\ url {https://github.com/kaiyangzhou/ssdg-benchmark}释放。
translated by 谷歌翻译
为了将训练有素的模型直接概括为看不见的目标域,域概括(DG)是一种新提出的学习范式,引起了很大的关注。以前的DG模型通常需要在训练过程中观察到的源域中的足够数量的带注释的样品。在本文中,我们放宽了有关完全注释的要求,并研究了半监督域的概括(SSDG),在训练过程中,只有一个源域与其他完全未标记的域一起完全注释。由于要解决观察到的源域之间的域间隙和预测看不见的目标域之间的挑战,我们提出了一个通过关节域吸引的标签和双分类器的新型深框架,以产生高质量的伪标记。具体来说,为了预测域移位下的准确伪标记,开发了一个域吸引的伪标记模块。此外,考虑到概括和伪标记之间的目标不一致:前者防止在所有源域上过度拟合,而后者可能过分适合未标记的源域,以高精度,我们采用双分类器来独立执行伪标记和域名,并在训练过程中执行伪造域通用化。 。当为未标记的源域生成准确的伪标记时,将域混合操作应用于标记和未标记域之间的新域,这对于提高模型的通用能力是有益的。公开可用的DG基准数据集的广泛结果显示了我们提出的SSDG方法的功效。
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
域的概括(DG)旨在学习一个对源域的模型,以很好地概括看不见的目标域。尽管它取得了巨大的成功,但大多数现有方法都需要用于源域中所有培训样本的标签信息,这在现实世界中既耗时又昂贵。在本文中,我们求助于解决半监督域的概括(SSDG)任务,其中每个源域中都有一些标签信息。为了解决任务,我们首先分析多域学习的理论,该理论强调了1)减轻域间隙的影响和2)利用所有样品训练模型可以有效地减少每个源域中的概括误差,因此提高伪标签的质量。根据分析,我们提出了Multimatch,即将FixMatch扩展到多任务学习框架,从而为SSDG生成高质量的伪标签。具体来说,我们将每个培训域视为一个任务(即本地任务),并将所有培训域(即全球任务)组合在一起,以训练看不见的测试域的额外任务。在多任务框架中,我们为每个任务使用独立的BN和分类器,这可以有效地减轻伪标记期间不同领域的干扰。同样,共享框架中的大多数参数,可以通过所有培训样本进行培训。此外,为了进一步提高伪标签的准确性和模型的概括,我们分别在培训和测试过程中分别融合了全球任务和本地任务的预测。一系列实验验证了所提出的方法的有效性,并且在几个基准DG数据集上优于现有的半监督方法和SSDG方法。
translated by 谷歌翻译
Though convolutional neural networks (CNNs) have demonstrated remarkable ability in learning discriminative features, they often generalize poorly to unseen domains. Domain generalization aims to address this problem by learning from a set of source domains a model that is generalizable to any unseen domain. In this paper, a novel approach is proposed based on probabilistically mixing instancelevel feature statistics of training samples across source domains. Our method, termed MixStyle, is motivated by the observation that visual domain is closely related to image style (e.g., photo vs. sketch images). Such style information is captured by the bottom layers of a CNN where our proposed style-mixing takes place. Mixing styles of training instances results in novel domains being synthesized implicitly, which increase the domain diversity of the source domains, and hence the generalizability of the trained model. MixStyle fits into mini-batch training perfectly and is extremely easy to implement. The effectiveness of MixStyle is demonstrated on a wide range of tasks including category classification, instance retrieval and reinforcement learning.
translated by 谷歌翻译
域泛化(DG)利用多个标记的源数据集来训练未经化的目标域的概括模型。然而,由于昂贵的注释成本,在现实世界应用中难以满足标记所有源数据的要求。在本文中,我们调查单个标记的域泛化(SLDG)任务,只标有一个源域,这比传统的域泛化(CDG)更实用和具有挑战性。 SLDG任务中的主要障碍是可怜的概括偏置:标记源数据集中的鉴别信息可以包含特定于域的偏差,限制训练模型的泛化。为了解决这个具有挑战性的任务,我们提出了一种称为域特定偏置滤波(DSBF)的新方法,该方法用标记的源数据初始化识别模型,然后通过用于泛化改进的未标记的源数据来滤除其域特定的偏差。我们将过滤过程划分为(1)特征提取器扩展通过K-Means的基于聚类的语义特征重新提取和(2)分类器通过注意引导语义特征投影校准。 DSBF统一探索标签和未标记的源数据,以增强培训模型的可辨性和泛化,从而产生高度普遍的模型。我们进一步提供了理论分析,以验证所提出的域特定的偏置滤波过程。关于多个数据集的广泛实验显示了DSBF在解决具有挑战性的SLDG任务和CDG任务时的优越性。
translated by 谷歌翻译
大多数现有的多源域适配(MSDA)方法通过特征分布对准最小化多个源 - 目标域对之间的距离,从单个源设置借用的方法。但是,对于不同的源极域,对齐成对特征分布是具有挑战性的,甚至可以对MSDA进行反效率。在本文中,我们介绍了一种新颖的方法:可转让的属性学习。动机很简单:虽然不同的域可以具有急剧不同的视野,但它们包含相同的类类,其特征在一起相同的属性;因此,MSDA模型应该专注于学习目标域的最可转换的属性。采用这种方法,我们提出了域名关注一致性网络,称为DAC网。关键设计是一个特征通道注意模块,旨在识别可转移功能(属性)。重要的是,注意模块受到一致性损失的监督,这对源极和目标域之间的信道注意权重的分布施加。此外,为了促进对目标数据的鉴别特征学习,我们将伪标记与类紧凑性丢失相结合,以最小化目标特征和分类器的权重向量之间的距离。在三个MSDA基准测试中进行了广泛的实验表明,我们的DAC-NET在所有这些中实现了新的最新性能。
translated by 谷歌翻译
机器学习系统通常假设训练和测试分布是相同的。为此,关键要求是开发可以概括到未经看不见的分布的模型。领域泛化(DG),即分销概括,近年来引起了越来越令人利益。域概括处理了一个具有挑战性的设置,其中给出了一个或几个不同但相关域,并且目标是学习可以概括到看不见的测试域的模型。多年来,域概括地区已经取得了巨大进展。本文提出了对该地区最近进步的首次审查。首先,我们提供了域泛化的正式定义,并讨论了几个相关领域。然后,我们彻底审查了与域泛化相关的理论,并仔细分析了泛化背后的理论。我们将最近的算法分为三个类:数据操作,表示学习和学习策略,并为每个类别详细介绍几种流行的算法。第三,我们介绍常用的数据集,应用程序和我们的开放源代码库进行公平评估。最后,我们总结了现有文学,并为未来提供了一些潜在的研究主题。
translated by 谷歌翻译
在域概括(DG)中取得了长足的进步,该域旨在从多个通知的源域到未知目标域学习可推广的模型。但是,在许多实际情况下,获得足够的源数据集的注释可能非常昂贵。为了摆脱域的概括和注释成本之间的困境,在本文中,我们介绍了一个名为标签效率的域概括(LEDG)的新任务,以使用标签限制的源域来实现模型概括。为了解决这一具有挑战性的任务,我们提出了一个称为协作探索和概括(CEG)的新颖框架,该框架共同优化了主动探索和半监督的概括。具体而言,在主动探索中,在避免信息差异和冗余的同时探索阶级和域可区分性,我们查询具有类别不确定性,域代表性和信息多样性的总体排名最高的样品标签。在半监督的概括中,我们设计了基于混音的内部和域间知识增强,以扩大域知识并概括域的不变性。我们以协作方式统一主动探索和半监督概括,并促进它们之间的相互增强,从而以有限的注释来增强模型的概括。广泛的实验表明,CEG产生了出色的概括性能。特别是,与以前的DG方法相比,CEG甚至只能使用5%的数据注释预算来实现竞争结果,并在PACS数据集中具有完全标记的数据。
translated by 谷歌翻译
完全监督分类的问题是,它需要大量的注释数据,但是,在许多数据集中,很大一部分数据是未标记的。为了缓解此问题,半监督学习(SSL)利用了标记域上的分类器知识,并将其推送到无标记的域,该域具有与注释数据相似的分布。 SSL方法的最新成功至关重要地取决于阈值伪标记,从而对未标记的域的一致性正则化。但是,现有方法并未在训练过程中纳入伪标签或未标记样品的不确定性,这是由于嘈杂的标签或由于强大的增强而导致的分布样品。受SSL最近发展的启发,我们本文的目标是提出一个新颖的无监督不确定性意识的目标,依赖于核心和认识论不确定性量化。通过提出的不确定性感知损失功能,我们的方法优于标准SSL基准,在计算轻量级的同时,与最新的方法相匹配,或与最先进的方法相提并论。我们的结果优于复杂数据集(例如CIFAR-100和MINI-IMAGENET)的最新结果。
translated by 谷歌翻译
传统的域泛化旨在从多个域学习域不变表示,这需要准确的注释。然而,在现实的应用方案中,收集和注释大量数据太麻烦甚至不可行。然而,Web数据提供免费午餐,以便使用丰富的风格信息访问大量未标记的数据,这些数据可以利用增强域泛化能力。在本文中,我们介绍了一个新的任务,称为半监督域泛化,研究如何互动和未标记的域名,并建立两个基准,包括一个网上爬行数据集,它造成了一种新颖的但是逼真的挑战来推动现有技术的限制。为了解决这项任务,简单的解决方案是通过伪标记与域混淆训练一起传播标签到未标记的域的类信息。考虑缩小域间隙可以提高伪标签的质量和进一步推进域不变特征学习的泛化,我们提出了一个循环学习框架,以鼓励标签传播和域泛化之间的积极反馈,有利于桥接标记的不断发展的中间域课程学习方式的未标记域。进行实验以验证我们框架的有效性。值得突出显示的是,Web爬网数据受益于我们的结果中所示的域泛化。我们的代码稍后将提供。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
半监督学习(SSL)在稀缺标记的数据时取得了长足的进步,但未标记的数据丰富。至关重要的是,最近的工作假设这种未标记的数据是从与标记数据相同的分布中汲取的。在这项工作中,我们表明,在存在未标记的辅助数据的情况下,最先进的SSL算法在性能下遭受了降解,这些数据不一定具有与标签集相同的类别分布。我们将此问题称为辅助-SSL,并提出了AuxMix,这是一种利用自我监督的学习任务来学习通用功能,以掩盖与标记的集合在语义上相似的辅助数据。我们还建议通过最大化不同辅助样品的预测熵来正规化学习。当在CIFAR10数据集中培训带有4K标记的样品时,我们在Resnet-50型号上显示了5%的改善,并且从Tiny-ImageNet数据集中绘制所有未标记的数据。我们报告了几个数据集的竞争结果,并进行消融研究。
translated by 谷歌翻译
半监督域适应性(SSDA)中的主要挑战之一是标记源和目标样本数量之间的偏差比,导致该模型偏向源域。 SSDA中的最新作品表明,仅将标记的目标样品与源样本对齐可能导致目标域与源域的不完全域对齐。在我们的方法中,为了使两个域对齐,我们利用对比的损失,使用来自两个域的监督样本学习语义上有意义的域不可知特征空间。为了减轻偏斜标签比率引起的挑战,我们通过将其特征表示形式与来自源和目标域的标记样品的特征表示形式进行比较,为未标记的目标样本进行了伪造。此外,为了增加目标域的支持,在训练过程中,这些潜在的嘈杂的伪标签逐渐被逐渐注入标记的目标数据集中。具体而言,我们使用温度缩放的余弦相似性度量将软伪标签分配给未标记的目标样品。此外,我们计算每个未标记样品的软伪标签的指数移动平均值。这些伪标签逐渐注入或删除)(从)基于置信阈值(以补充源和目标分布的比对)(从)中(从)中。最后,我们在标记和伪标记的数据集上使用有监督的对比损失来对齐源和目标分布。使用我们提出的方法,我们在SSDA基准测试中展示了最先进的性能-Office-Home,Domainnet和Office-31。
translated by 谷歌翻译
很少有射击学习(FSL)旨在通过利用基本数据集的先验知识来识别只有几个支持样本的新奇查询。在本文中,我们考虑了FSL中的域移位问题,并旨在解决支持集和查询集之间的域间隙。不同于以前考虑基础和新颖类之间的域移位的跨域FSL工作(CD-FSL),新问题称为跨域跨集FSL(CDSC-FSL),不仅需要很少的学习者适应新的领域,但也要在每个新颖类中的不同领域之间保持一致。为此,我们提出了一种新颖的方法,即Stabpa,学习原型紧凑和跨域对准表示,以便可以同时解决域的转移和很少的学习学习。我们对分别从域和办公室数据集构建的两个新的CDCS-FSL基准进行评估。值得注意的是,我们的方法的表现优于多个详细的基线,例如,在域内,将5-shot精度提高了6.0点。代码可从https://github.com/wentaochen0813/cdcs-fsl获得
translated by 谷歌翻译
域适应(DA)旨在将知识从标签富裕但异构的域转移到标签恐慌域,这减轻了标签努力并吸引了相当大的关注。与以前的方法不同,重点是学习域中的特征表示,一些最近的方法存在通用半监督学习(SSL)技术,直接将它们应用于DA任务,甚至实现竞争性能。最受欢迎的SSL技术之一是伪标记,可通过标记数据训练的分类器为每个未标记数据分配伪标签。但是,它忽略了DA问题的分布偏移,并且不可避免地偏置为源数据。要解决此问题,我们提出了一个名为辅助目标域导向的分类器(ATDOC)的新伪标签框架。 ATDOC通过为目标数据引入辅助分类器来缓解分类器偏置,以提高伪标签的质量。具体地,我们使用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而不引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻域聚集的ATDOC显着优于域对齐技术和现有的SSL技术,以及甚至瘢痕标记的SSL任务。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
临床医生在手术室(OR)的细粒度定位是设计新一代或支持系统的关键组成部分。需要基于人像素的分段和身体视觉计算机的计算机视觉模型检测,以更好地了解OR的临床活动和空间布局。这是具有挑战性的,这不仅是因为或图像与传统视觉数据集有很大不同,还因为在隐私问题上很难收集和生成数据和注释。为了解决这些问题,我们首先研究了如何在低分辨率图像上进行姿势估计和实例分割,而下采样因子从1x到12倍进行下采样因子。其次,为了解决域的偏移和缺乏注释,我们提出了一种新型的无监督域适应方法,称为适配器,以使模型从野外标记的源域中适应统计上不同的未标记目标域。我们建议在未标记的目标域图像的不同增强上利用明确的几何约束,以生成准确的伪标签,并使用这些伪标签在自我训练框架中对高分辨率和低分辨率或图像进行训练。此外,我们提出了分离的特征归一化,以处理统计上不同的源和目标域数据。对两个或数据集MVOR+和TUM-或TUM-或测试的详细消融研究的广泛实验结果表明,我们方法对强构建的基线的有效性,尤其是在低分辨率的隐私性或图像上。最后,我们在大规模可可数据集上显示了我们作为半监督学习方法(SSL)方法的普遍性,在这里,我们获得了可比较的结果,而对经过100%标记的监督培训的模型的标签监督只有1%。 。
translated by 谷歌翻译
无监督的域适应(UDA)旨在将标记的源分布与未标记的目标分布对齐,以获取域不变预测模型。然而,众所周知的UDA方法的应用在半监督域适应(SSDA)方案中不完全概括,其中来自目标域的少数标记的样本可用。在本文中,我们提出了一种用于半监督域适应(CLDA)的简单对比学习框架,该框架试图在SSDA中弥合标记和未标记的目标分布与源极和未标记的目标分布之间的域间差距之间的域间隙。我们建议采用类明智的对比学学习来降低原始(输入图像)和强大增强的未标记目标图像之间的域间间隙和实例级对比度对准,以最小化域内差异。我们已经凭经验表明,这两个模块相互补充,以实现卓越的性能。在三个众所周知的域适应基准数据集中的实验即Domainnet,Office-Home和Office31展示了我们方法的有效性。 CLDA在所有上述数据集上实现最先进的结果。
translated by 谷歌翻译