监督的机器学习方法需要在训练阶段最小化损失功能。顺序数据在许多研究领域中无处不在,并且通常通过为表格数据设计的基于欧几里得距离的损失函数处理。对于平滑的振荡数据,这些常规方法缺乏对同时惩罚幅度,频率和相位预测误差的能力,并且倾向于偏向振幅误差。我们将表面相似性参数(SSP)作为一种新型损耗函数引入,对于平滑振荡序列的训练机器学习模型特别有用。我们对混沌时空动力学系统进行的广泛实验表明,SSP有益于塑造梯度,从而加速训练过程,减少最终预测误差,增加重量初始化的鲁棒性以及与使用经典损失功能相比,实施更强的正则化效果。结果表明,新型损失度量的潜力,特别是对于高度复杂和混乱的数据,例如由非线性二维Kuramoto-Sivashinsky方程以及流体中分散表面重力波的线性传播所引起的数据。
translated by 谷歌翻译
具有经典数字求解器的湍流模拟需要非常高分辨率的网格来准确地解决动态。在这里,我们以低空间和时间分辨率培训学习模拟器,以捕获高分辨率产生的湍流动态。我们表明我们所提出的模型可以比各种科学相关指标的相同低分辨率的经典数字求解器更准确地模拟湍流动态。我们的模型从数据训练结束到底,能够以低分辨率学习一系列挑战性的混乱和动态动态,包括最先进的雅典娜++发动机产生的轨迹。我们表明,我们的更简单,通用体系结构优于来自所学到的湍流模拟文献的各种专业的湍流特异性架构。一般来说,我们看到学习的模拟器产生不稳定的轨迹;但是,我们表明调整训练噪音和时间下采样解决了这个问题。我们还发现,虽然超出培训分配的泛化是学习模型,训练噪声,卷积架构以及增加损失约束的挑战。广泛地,我们得出的结论是,我们所知的模拟器优于传统的求解器在较粗糙的网格上运行,并强调简单的设计选择可以提供稳定性和鲁棒的泛化。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
物理引导的神经网络(PGNNS)代表了使用物理引导(PG)丢失功能(捕获具有已知物理学中的网络输出中的违规)培训的新出现类的神经网络,以及数据中包含的监督。 PGNN中的现有工作表明,使用恒定的折衷参数,在神经网络目标中添加单个PG损耗功能的功效,以确保更好的普遍性。然而,在具有竞争梯度方向的多个PG函数的存在中,需要自适应地调谐在训练过程中不同的PG损耗功能的贡献,以获得更广泛的解决方案。我们展示了在求解基于物理学的特征值方程的最低(或最高)特征向量的通用神经网络问题中竞争PG损失的存在,这在许多科学问题中通常遇到。我们提出了一种新的方法来处理竞争PG损失,并在量子力学和电磁繁殖中的两个激励应用中展示其在学习普遍解决方案中的功效。这项工作中使用的所有代码和数据都可以在https://github.com/jayroxis/cophy-pgnn获得。
translated by 谷歌翻译
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
translated by 谷歌翻译
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了有关PDE的数值模拟的大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,与机器学习的经典数值技术的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们以基于傅立叶的光谱方法为基础,这些光谱方法比其他数值方案要高得多,以模拟使用平滑且周期性解决方案的PDE。具体而言,我们为流体动力学的三个模型PDE开发了ML增强的光谱求解器,从而提高了标准光谱求解器在相同分辨率下的准确性。我们还展示了一些关键设计原则,用于将机器学习和用于解决PDE的数值方法结合使用。
translated by 谷歌翻译
生成高度详细的复杂数据是机器学习领域中的长期存在且经常考虑的问题。但是,开发细节感知的发电机仍然是一个具有挑战性和开放的问题。生成对抗网络是许多最新方法的基础。但是,他们引入了第二个网络作为损失函数训练,使对学习功能的解释变得更加困难。作为替代方案,我们提出了一种基于小波损耗公式的新方法,该方法在优化方面保持透明。在生成具有高频细节的数据时,基于小波的损耗函数用于克服常规距离指标(例如L1或L2距离)的局限性。我们表明,我们的方法可以在说明性合成测试案例中成功重建高频细节。此外,我们根据物理模拟应用于更复杂的表面时评估性能。以大致近似的模拟为输入,我们的方法在考虑它们的发展方式的同时进化了相应的空间细节。我们考虑了这个问题,从空间和时间频率方面,并利用训练有我们的小波损失的生成网络来学习表面动力学的所需时空信号。我们通过一组合成波函数测试以及弹性塑料材料的复杂2D和3D动力学测试方法的功能。
translated by 谷歌翻译
电磁源成像(ESI)需要解决高度不良的反问题。为了寻求独特的解决方案,传统的ESI方法施加了各种形式的先验,这些方法可能无法准确反映实际的源属性,这可能会阻碍其广泛的应用。为了克服这一局限性,在本文中,提出了一种新的数据合成的时空卷积编码器网络方法,称为dst-cednet。 DST-CEDNET将ESI作为机器学习问题重新铸造,其中歧视性学习和潜在空间表示形式集成到卷积编码器decoder网络(CEDNET)中,以从测量的电脑摄影/磁脑摄影学(E/MEG)信号中学习强大的映射,大脑活动。特别是,通过纳入有关动态大脑活动的先验知识,设计了一种新型的数据合成策略来生成大规模样本,以有效训练Cednet。这与传统的ESI方法相反,在传统的ESI方法中,通常通过主要旨在用于数学便利的约束来实施先前的信息。广泛的数值实验以及对真实MEG和癫痫脑电图数据集的分析表明,DST-Cednet在多种源配置下稳健估计源信号的多种最新ESI方法的表现。
translated by 谷歌翻译
我们提出了一种基于机器学习的新型混合策略,以改善水平集方法中的曲率估计。提出的推理系统伴侣使用标准数值方案增强了神经网络,以更准确地计算曲率。我们混合框架的核心是一种开关机制,依赖于确定的数值技术来衡量曲率。如果曲率幅度大于依赖分辨率的阈值,则使用神经网络来产生更好的近似值。我们的网络是安装在各种配置下由正弦和圆形接口样品组成的合成数据集的多层感知器。为了降低数据集大小和训练复杂性,我们利用问题的特征对称性,并在曲率光谱的一半上构建模型。这些储蓄导致一个强大的推理系统能够仅胜过其任何数值或神经成分。具有固定,平滑接口的实验表明,我们的混合求解器在粗网格和陡峭的界面区域中明显优于常规数值方法。与先前的研究相比,我们已经观察到通过从多个接口类型的数据对训练回归模型后的精确提高,并使用专门的输入预处理转换数据。特别是,我们的发现证实机器学习是减少或消除级别方法中质量损失的有希望的场所。
translated by 谷歌翻译
Machine learning frameworks such as Genetic Programming (GP) and Reinforcement Learning (RL) are gaining popularity in flow control. This work presents a comparative analysis of the two, bench-marking some of their most representative algorithms against global optimization techniques such as Bayesian Optimization (BO) and Lipschitz global optimization (LIPO). First, we review the general framework of the model-free control problem, bringing together all methods as black-box optimization problems. Then, we test the control algorithms on three test cases. These are (1) the stabilization of a nonlinear dynamical system featuring frequency cross-talk, (2) the wave cancellation from a Burgers' flow and (3) the drag reduction in a cylinder wake flow. We present a comprehensive comparison to illustrate their differences in exploration versus exploitation and their balance between `model capacity' in the control law definition versus `required complexity'. We believe that such a comparison paves the way toward the hybridization of the various methods, and we offer some perspective on their future development in the literature on flow control problems.
translated by 谷歌翻译
生产精确的天气预报和不确定的不确定性的可靠量化是一个开放的科学挑战。到目前为止,集团预测是最成功的方法,以产生相关预测的方法以及估计其不确定性。集合预测的主要局限性是高计算成本,难以捕获和量化不同的不确定性来源,特别是与模型误差相关的源。在这项工作中,进行概念证据模型实验,以检查培训的ANN的性能,以预测系统的校正状态和使用单个确定性预测作为输入的状态不确定性。我们比较不同的培训策略:一个基于使用集合预测的平均值和传播作为目标的直接培训,另一个依赖于使用确定性预测作为目标的决定性预测,其中来自数据隐含地学习不确定性。对于最后一种方法,提出和评估了两个替代损失函数,基于数据观察似然和基于误差的本地估计来评估另一个丢失功能。在不同的交货时间和方案中检查网络的性能,在没有模型错误的情况下。使用Lorenz'96模型的实验表明,ANNS能够模拟集合预测的一些属性,如最不可预测模式的过滤和预测不确定性的状态相关量化。此外,ANNS提供了在模型误差存在下的预测不确定性的可靠估计。
translated by 谷歌翻译
在本文中,我们考虑了与未知(或部分未知),非平稳性,潜在的嘈杂和混乱的时间演变相关的机器学习(ML)任务,以预测临界点过渡和长期尖端行为动力系统。我们专注于特别具有挑战性的情况,在过去的情况下,过去的动态状态时间序列主要是在状态空间的受限区域中,而要预测的行为会在ML未完全观察到的较大状态空间集中演变出来训练期间的模型。在这种情况下,要求ML预测系统能够推断出在训练过程中观察到的不同动态。我们研究了ML方法在多大程度上能够为此任务完成有用的结果以及它们失败的条件。通常,我们发现即使在极具挑战性的情况下,ML方法也出奇地有效,但是(正如人们所期望的)``需要``太多''的外推。基于科学知识的传统建模的ML方法,因此即使单独采取行动时,我们发现的混合预测系统也可以实现有用的预测。我们还发现,实现有用的结果可能需要使用使用非常仔细选择的ML超参数,我们提出了一个超参数优化策略来解决此问题。本文的主要结论是,基于ML (也许是由于临界点的穿越)包括在训练数据探索的集合中的动态。
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
心肌组织中电脉冲现象的分析对于心律节律疾病和其他心脏病生理学的诊断是重要的。心脏映射技术获取本地时间测量,并将它们与心脏表面相结合以可视化电生理波现象的传播。然而,低空间分辨率,稀疏测量位置,噪音和其他工件使得能够准确地可视化时空活动来挑战。例如,电解剖导管映射受测量的稀疏性严重限制,并且光学映射容易发生噪声和运动伪影。在过去,已经提出了几种方法来获得从嘈杂或稀疏映射数据的更可靠的地图。在这里,我们证明了深度学习可用于计算阶段地图和检测心室颤动的光学映射视频中的相位奇点,以及非常嘈杂,低分辨率和极其稀疏的旋流波混沌模拟导管映射数据的模拟数据。深度学习方法学习直接将相位映射和相奇异性的位置与短时空序列的电气数据序列联系起来。我们基于具有编码和解码结构的卷积神经网络测试了几种神经网络架构,以通过预测相位映射和相位奇异性的后续经典计算来预测直接或间接地预测相位映射或转子芯位置。可以跨不同数据执行预测,其中模型在一个物种上培训,然后成功应用于另一个物种,或者仅在模拟数据上培训,然后应用于实验数据。未来的用途可包括对基本心血管研究中的光学映射研究的分析,以及临床环境中心房颤动的映射。
translated by 谷歌翻译
目前,由精确的径向速度(RV)观察结果受到恒星活性引入的虚假RV信号的限制。我们表明,诸如线性回归和神经网络之类的机器学习技术可以有效地从RV观测中删除活动信号(由于星形/张图引起的)。先前的工作着重于使用高斯工艺回归等建模技术仔细地过滤活性信号(例如Haywood等人,2014年)。取而代之的是,我们仅使用对光谱线平均形状的更改进行系统地删除活动信号,也没有有关收集观测值的信息。我们对模拟数据(使用SOAP 2.0软件生成; Dumusque等人,2014年生成)和从Harps-N太阳能望远镜(Dumusque等,2015; Phillips等人2015; 2016; Collier训练)培训了机器学习模型。 Cameron等人2019)。我们发现,这些技术可以从模拟数据(将RV散射从82 cm/s提高到3 cm/s)以及从HARPS-N太阳能望远镜中几乎每天进行的600多种真实观察结果来预测和消除恒星活动(将RV散射从82 cm/s提高到3 cm/s)。 (将RV散射从1.753 m/s提高到1.039 m/s,提高了约1.7倍)。将来,这些或类似的技术可能会从太阳系以外的恒星观察中去除活动信号,并最终有助于检测到阳光状恒星周围可居住的区域质量系外行星。
translated by 谷歌翻译
Neural networks are known to be a class of highly expressive functions able to fit even random inputoutput mappings with 100% accuracy. In this work we present properties of neural networks that complement this aspect of expressivity. By using tools from Fourier analysis, we highlight a learning bias of deep networks towards low frequency functions -i.e. functions that vary globally without local fluctuations -which manifests itself as a frequency-dependent learning speed. Intuitively, this property is in line with the observation that over-parameterized networks prioritize learning simple patterns that generalize across data samples. We also investigate the role of the shape of the data manifold by presenting empirical and theoretical evidence that, somewhat counter-intuitively, learning higher frequencies gets easier with increasing manifold complexity.
translated by 谷歌翻译
深度学习在广泛的AI应用方面取得了有希望的结果。较大的数据集和模型一致地产生更好的性能。但是,我们一般花费更长的培训时间,以更多的计算和沟通。在本调查中,我们的目标是在模型精度和模型效率方面提供关于大规模深度学习优化的清晰草图。我们调查最常用于优化的算法,详细阐述了大批量培训中出现的泛化差距的可辩论主题,并审查了解决通信开销并减少内存足迹的SOTA策略。
translated by 谷歌翻译