我们提出了一种基于机器学习的新型混合策略,以改善水平集方法中的曲率估计。提出的推理系统伴侣使用标准数值方案增强了神经网络,以更准确地计算曲率。我们混合框架的核心是一种开关机制,依赖于确定的数值技术来衡量曲率。如果曲率幅度大于依赖分辨率的阈值,则使用神经网络来产生更好的近似值。我们的网络是安装在各种配置下由正弦和圆形接口样品组成的合成数据集的多层感知器。为了降低数据集大小和训练复杂性,我们利用问题的特征对称性,并在曲率光谱的一半上构建模型。这些储蓄导致一个强大的推理系统能够仅胜过其任何数值或神经成分。具有固定,平滑接口的实验表明,我们的混合求解器在粗网格和陡峭的界面区域中明显优于常规数值方法。与先前的研究相比,我们已经观察到通过从多个接口类型的数据对训练回归模型后的精确提高,并使用专门的输入预处理转换数据。特别是,我们的发现证实机器学习是减少或消除级别方法中质量损失的有希望的场所。
translated by 谷歌翻译
我们提出了一种基于错误的神经模型模型,用于在级别集方法中近似二维曲率。我们的主要贡献是重新设计的混合求解器[Larios-C \'Ardenas和Gibou,J。Comput。物理。 (2022年5月),10.1016/j.jcp.2022.111291]依靠数值方案来按需启用机器学习操作。特别是,我们的常规特征是双重预测对线束曲率对称不变性,以支持精度和稳定性。该求解器的核心是在圆形和正弦式接口样品上训练的多层感知器。它的作用是量化数值曲率近似值中的误差,并沿自由边界发射校正的校正估计值。这些校正是针对预处理上下文级别,曲率和梯度数据而产生的。为了促进神经能力,我们采用了样品阴性屈肌的归一化,重新定位和基于反射的增强。以相同的方式,我们的系统结合了降低,平衡性良好和正则化,以最大程度地减少外围影响。我们的训练方法同样可以跨网格尺寸扩展。为此,我们在数据生产过程中引入了无量纲的参数化和概率子采样。总之,所有这些元素都提高了分辨不足区域周围曲率计算的准确性和效率。在大多数实验中,我们的策略的表现优于数值基线,是重新涉及步骤数的两倍,同时仅需要一小部分成本。
translated by 谷歌翻译
我们为级别集方法提出了一个数据驱动的均值曲线求解器。这项工作是我们在[arxiv:2201.12342] [1]和[doi:10.1016/j.jcp.2022.1111291] [arxiv:2201.12342] [1]中的二维策略的$ \ mathbb {r}^3 $的自然扩展。 ]。但是,与[1,2]建立了依赖分辨率的神经网络词典相比,在这里,我们在$ \ mathbb {r}^3 $中开发了两对模型,而不管网格大小如何。我们的前馈网络摄入的水平集,梯度和曲率数据转换为固定接口节点的数值均值曲率近似值。为了降低问题的复杂性,我们使用高斯曲率对模板进行了分类,并将模型分别适合于非堆肥和鞍模式。非插图模板更容易处理,因为它们表现出以单调性和对称性为特征的曲率误差分布。尽管后者允许我们仅在平均曲面频谱的一半上进行训练,但前者帮助我们将数据驱动的融合并在平坦区域附近无缝地融合了基线估计。另一方面,鞍形图案误差结构不太清楚。因此,我们没有利用超出已知信息的潜在信息。在这方面,我们不仅在球形和正弦和双曲线抛物面斑块上训练了我们的模型。我们构建他们的数据集的方法是系统的,但是随机收集样品,同时确保均衡度。我们还诉诸于标准化和降低尺寸,作为预处理步骤和集成正则化以最大程度地减少异常值。此外,我们利用曲率旋转/反射不变性在推理时提高精度。几项实验证实,与现代粒子的界面重建和水平设定方案相比,我们提出的系统可以产生更准确的均值曲线估计。
translated by 谷歌翻译
我们提出了一种深度学习策略,以估计级别方法中二维隐式接口的平均曲率。我们的方法是基于拟合馈送的神经网络与由沉浸在各种分辨率均匀网格中的圆形界面构建的合成数据集。这些多层感知器处理自由边界旁边的网格点的级别值,并在接口上最接近的位置输出无量纲曲率。在统一和自适应网格中,涉及不规则界面的精确分析表明,我们的模型与$ l^1 $和$ l^2 $规范中的传统数值方案具有竞争力。特别是,当界面具有陡峭的曲率区域以及重新初始化水平集函数的迭代次数时,我们的神经网络在粗分辨率中以可比精度近似于曲率。尽管传统的数值方法比我们的框架更强大,但我们的结果揭示了机器学习的潜力,以处理已知级别方法遇到困难的计算任务。我们还确定,与通用神经网络相比,可以设计出依赖于应用程序的局部分辨率的局部分辨率图来更有效地估计平均曲率。
translated by 谷歌翻译
我们提出了一个机器学习框架,该框架将图像超分辨率技术与级别测量方法中的被动标量传输融为一体。在这里,我们研究是否可以计算直接数据驱动的校正,以最大程度地减少界面的粗晶石演化中的数值粘度。拟议的系统的起点是半拉格朗日配方。并且,为了减少数值耗散,我们引入了一个易于识别的多层感知器。该神经网络的作用是改善数值估计的表面轨迹。为此,它在单个时间范围内处理局部级别集,速度和位置数据,以便在移动前部附近的选择顶点。因此,我们的主要贡献是一种新型的机器学习调音算法,该算法与选择性重新融为一体并与常规对流交替运行,以保持调整后的界面轨迹平滑。因此,我们的程序比基于全卷卷积的应用更有效,因为它仅在自由边界周围集中计算工作。同样,我们通过各种测试表明,我们的策略有效地抵消了数值扩散和质量损失。例如,在简单的对流问题中,我们的方法可以达到与基线方案相同的精度,分辨率是分辨率的两倍,但成本的一小部分。同样,我们的杂种技术可以产生可行的固化前端,以进行结晶过程。另一方面,切向剪切流和高度变形的模拟会导致偏置伪像和推理恶化。同样,严格的设计速度约束可以将我们的求解器的应用限制为涉及快速接口更改的问题。在后一种情况下,我们已经确定了几个机会来增强鲁棒性,而没有放弃我们的方法的基本概念。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
在本文中,我们介绍了一种基于距离场的新方法,以确保物理知识的深神经网络中的边界条件。众所周知,满足网状紫外线和颗粒方法中的Dirichlet边界条件的挑战是众所周知的。该问题在物理信息的开发中也是相关的,用于解决部分微分方程的解。我们在人工神经网络中介绍几何意识的试验功能,以改善偏微分方程的深度学习培训。为此,我们使用来自建设性的实体几何(R函数)和广义的等级坐标(平均值潜在字段)的概念来构建$ \ phi $,对域边界的近似距离函数。要恰好施加均匀的Dirichlet边界条件,试验函数乘以\ PHI $乘以PINN近似,并且通过Transfinite插值的泛化用于先验满足的不均匀Dirichlet(必要),Neumann(自然)和Robin边界复杂几何形状的条件。在这样做时,我们消除了与搭配方法中的边界条件满意相关的建模误差,并确保以ritz方法点点到运动可视性。我们在具有仿射和弯曲边界的域上的线性和非线性边值问题的数值解。 1D中的基准问题,用于线性弹性,平面扩散和光束弯曲;考虑了泊松方程的2D,考虑了双音态方程和非线性欧克隆方程。该方法延伸到更高的尺寸,并通过在4D超立方套上解决彼此与均匀的Dirichlet边界条件求泊松问题来展示其使用。该研究提供了用于网眼分析的途径,以在没有域离散化的情况下在确切的几何图形上进行。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
Multilayer Neural Networks trained with the backpropagation algorithm constitute the best example of a successful Gradient-Based Learning technique. Given an appropriate network architecture, Gradient-Based Learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional Neural Networks, that are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques.Real-life document recognition systems are composed of multiple modules including eld extraction, segmentation, recognition, and language modeling. A new learning paradigm, called Graph Transformer Networks (GTN), allows such multi-module systems to be trained globally using Gradient-Based methods so as to minimize an overall performance measure.Two systems for on-line handwriting recognition are described. Experiments demonstrate the advantage of global training, and the exibility of Graph Transformer Networks.A Graph Transformer Network for reading bank check is also described. It uses Convolutional Neural Network character recognizers combined with global training techniques to provides record accuracy on business and personal checks. It is deployed commercially and reads several million checks per day.
translated by 谷歌翻译
培训和测试监督对象检测模型需要大量带有地面真相标签的图像。标签定义图像中的对象类及其位置,形状以及可能的其他信息,例如姿势。即使存在人力,标签过程也非常耗时。我们引入了一个新的标签工具,用于2D图像以及3D三角网格:3D标记工具(3DLT)。这是一个独立的,功能丰富和跨平台软件,不需要安装,并且可以在Windows,MacOS和基于Linux的发行版上运行。我们不再像当前工具那样在每个图像上分别标记相同的对象,而是使用深度信息从上述图像重建三角形网格,并仅在上述网格上标记一次对象。我们使用注册来简化3D标记,离群值检测来改进2D边界框的计算和表面重建,以将标记可能性扩展到大点云。我们的工具经过最先进的方法测试,并且在保持准确性和易用性的同时,它极大地超过了它们。
translated by 谷歌翻译
在过去的十年中,在许多工程领域,包括自动驾驶汽车,医疗诊断和搜索引擎,甚至在艺术创作中,神经网络(NNS)已被证明是极有效的工具。确实,NN通常果断地超过传统算法。直到最近才引起重大兴趣的一个领域是使用NNS设计数值求解器,尤其是用于离散的偏微分方程。最近的几篇论文考虑使用NNS来开发多机方法,这些方法是解决离散的偏微分方程和其他稀疏矩阵问题的领先计算工具。我们扩展了这些新想法,重点关注所谓的放松操作员(也称为Smoothers),这是Multigrid算法的重要组成部分,在这种情况下尚未受到很多关注。我们探索了一种使用NNS学习带有随机系数的扩散算子的放松参数的方法,用于雅各比类型的Smoothers和4Color Gaussseidel Smoothers。后者的产量异常高效且易于使连续的放松(SOR)SmoOthors平行。此外,这项工作表明,使用两个网格方法在相对较小的网格上学习放松参数,而Gelfand的公式可以轻松实现。这些方法有效地产生了几乎最佳的参数,从而显着提高了大网格上的Multigrid算法的收敛速率。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
深度学习表明了视觉识别和某些人工智能任务的成功应用。深度学习也被认为是一种强大的工具,具有近似功能的高度灵活性。在本工作中,设计具有所需属性的功能,以近似PDE的解决方案。我们的方法基于后验误差估计,其中解决了错误定位以在神经网络框架内制定误差估计器的伴随问题。开发了一种高效且易于实现的算法,以通过采用双重加权剩余方法来获得多个目标功能的后验误差估计,然后使用神经网络计算原始和伴随解决方案。本研究表明,即使具有相对较少的训练数据,这种基于数据驱动的模型的学习具有卓越的感兴趣量的近似。用数值测试实施例证实了新颖的算法发展。证明了在浅神经网络上使用深神经网络的优点,并且还呈现了收敛增强技术
translated by 谷歌翻译
流体(VOF)方法的体积被广泛用于多相流仿真中,以跟踪和定位两个不混溶的流体之间的界面。VOF方法的主要瓶颈是界面重建步骤,由于其高计算成本和非结构化网格的精度较低。我们建议基于图神经网络(GNN)的机器学习增强的VOF方法,以加速通用非结构化网格上的接口重建。我们首先开发一种方法来基于在非结构化网格上离散的抛物面表面生成合成数据集。然后,我们训练基于GNN的模型并执行概括测试。我们的结果表明,在工业背景下,基于GNN的界面重建方法的效率。
translated by 谷歌翻译
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入式表面之间的测量学和地球距离的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估算Karcher均值并在形状群体上执行切线PCA的方法,以及计算沿表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变异配方,这使我们能够在计算未参数化表面之间的地理位置时强制执行重新训练的独立性,同时还可以使我们能够与多用途算法相比,使我们能够将表面与vare表面进行比较。采样或网状结构。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
translated by 谷歌翻译
Helmholtz方程已被用于在谐波负载下建模声压场。通过求解Helmholtz方程计算谐波声压场,如果想要研究许多不同的几何形状,可以迅速变得不可行,以便频率范围。我们提出了一种机器学习方法,即前馈密集神经网络,用于在频率范围内计算平均声压。通过数值计算平均声压的响应,通过对压力的特征模分分解来产生数据。我们分析近似的准确性,并确定需要多少训练数据,以便在平均压力响应的预测中达到一定的准确性。
translated by 谷歌翻译