Helmholtz方程已被用于在谐波负载下建模声压场。通过求解Helmholtz方程计算谐波声压场,如果想要研究许多不同的几何形状,可以迅速变得不可行,以便频率范围。我们提出了一种机器学习方法,即前馈密集神经网络,用于在频率范围内计算平均声压。通过数值计算平均声压的响应,通过对压力的特征模分分解来产生数据。我们分析近似的准确性,并确定需要多少训练数据,以便在平均压力响应的预测中达到一定的准确性。
translated by 谷歌翻译
在本文中,我们介绍了一种基于距离场的新方法,以确保物理知识的深神经网络中的边界条件。众所周知,满足网状紫外线和颗粒方法中的Dirichlet边界条件的挑战是众所周知的。该问题在物理信息的开发中也是相关的,用于解决部分微分方程的解。我们在人工神经网络中介绍几何意识的试验功能,以改善偏微分方程的深度学习培训。为此,我们使用来自建设性的实体几何(R函数)和广义的等级坐标(平均值潜在字段)的概念来构建$ \ phi $,对域边界的近似距离函数。要恰好施加均匀的Dirichlet边界条件,试验函数乘以\ PHI $乘以PINN近似,并且通过Transfinite插值的泛化用于先验满足的不均匀Dirichlet(必要),Neumann(自然)和Robin边界复杂几何形状的条件。在这样做时,我们消除了与搭配方法中的边界条件满意相关的建模误差,并确保以ritz方法点点到运动可视性。我们在具有仿射和弯曲边界的域上的线性和非线性边值问题的数值解。 1D中的基准问题,用于线性弹性,平面扩散和光束弯曲;考虑了泊松方程的2D,考虑了双音态方程和非线性欧克隆方程。该方法延伸到更高的尺寸,并通过在4D超立方套上解决彼此与均匀的Dirichlet边界条件求泊松问题来展示其使用。该研究提供了用于网眼分析的途径,以在没有域离散化的情况下在确切的几何图形上进行。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the weak solutions of PDEs via a minmax formulation, which transforms the PDE problem into a minimax optimization problem to identify weak solutions. The name "Friedrichs learning" is for highlighting the close relationship between our learning strategy and Friedrichs theory on symmetric systems of PDEs. The weak solution and the test function in the weak formulation are parameterized as deep neural networks in a mesh-free manner, which are alternately updated to approach the optimal solution networks approximating the weak solution and the optimal test function, respectively. Extensive numerical results indicate that our mesh-free method can provide reasonably good solutions to a wide range of PDEs defined on regular and irregular domains in various dimensions, where classical numerical methods such as finite difference methods and finite element methods may be tedious or difficult to be applied.
translated by 谷歌翻译
本文提出了一个无网格的计算框架和机器学习理论,用于在未知的歧管上求解椭圆形PDE,并根据扩散地图(DM)和深度学习确定点云。 PDE求解器是作为监督的学习任务制定的,以解决最小二乘回归问题,该问题施加了近似PDE的代数方程(如果适用)。该代数方程涉及通过DM渐近扩展获得的图形拉平型矩阵,该基质是二阶椭圆差差算子的一致估计器。最终的数值方法是解决受神经网络假设空间解决方案的高度非凸经验最小化问题。在体积良好的椭圆PDE设置中,当假设空间由具有无限宽度或深度的神经网络组成时,我们表明,经验损失函数的全球最小化器是大型训练数据极限的一致解决方案。当假设空间是一个两层神经网络时,我们表明,对于足够大的宽度,梯度下降可以识别经验损失函数的全局最小化器。支持数值示例证明了解决方案的收敛性,范围从具有低和高共限度的简单歧管到具有和没有边界的粗糙表面。我们还表明,所提出的NN求解器可以在具有概括性误差的新数据点上稳健地概括PDE解决方案,这些误差几乎与训练错误相同,从而取代了基于Nystrom的插值方法。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
High-dimensional PDEs have been a longstanding computational challenge. We propose to solve highdimensional PDEs by approximating the solution with a deep neural network which is trained to satisfy the differential operator, initial condition, and boundary conditions. Our algorithm is meshfree, which is key since meshes become infeasible in higher dimensions. Instead of forming a mesh, the neural network is trained on batches of randomly sampled time and space points. The algorithm is tested on a class of high-dimensional free boundary PDEs, which we are able to accurately solve in up to 200 dimensions. The algorithm is also tested on a high-dimensional Hamilton-Jacobi-Bellman PDE and Burgers' equation. The deep learning algorithm approximates the general solution to the Burgers' equation for a continuum of different boundary conditions and physical conditions (which can be viewed as a high-dimensional space). We call the algorithm a "Deep Galerkin Method (DGM)" since it is similar in spirit to Galerkin methods, with the solution approximated by a neural network instead of a linear combination of basis functions. In addition, we prove a theorem regarding the approximation power of neural networks for a class of quasilinear parabolic PDEs.
translated by 谷歌翻译
在本文中,开发了用于求解具有delta功能奇异源的椭圆方程的浅丽兹型神经网络。目前的工作中有三个新颖的功能。即,(i)Delta函数奇异性自然删除,(ii)级别集合函数作为功能输入引入,(iii)它完全浅,仅包含一个隐藏层。我们首先介绍问题的能量功能,然后转换奇异源对沿界面的常规表面积分的贡献。以这种方式,可以自然删除三角洲函数,而无需引入传统正规化方法(例如众所周知的沉浸式边界方法)中常用的函数。然后将最初的问题重新重新审议为最小化问题。我们提出了一个带有一个隐藏层的浅丽兹型神经网络,以近似能量功能的全局最小化器。结果,通过最大程度地减少能源的离散版本的损耗函数来训练网络。此外,我们将界面的级别设置函数作为网络的功能输入,并发现它可以显着提高训练效率和准确性。我们执行一系列数值测试,以显示本方法的准确性及其在不规则域和较高维度中问题的能力。
translated by 谷歌翻译
运营商网络已成为有希望的深度学习工具,用于近似偏微分方程(PDE)的解决方案。这些网络绘制了描述材料属性,迫使函数和边界数据的输入函数到PDE解决方案。这项工作描述了一种针对操作员网络的新体系结构,该架构模仿了从问题的变异公式或弱公式中获得的数值解决方案的形式。这些想法在通用椭圆的PDE中的应用导致变异模拟操作员网络(Varmion)。像常规的深层操作员网络(DeepOnet)一样,Varmion也由一个子网络组成,该子网络构建了输出的基础函数,另一个构造了这些基础函数系数的基本功能。但是,与deponet相反,在Varmion中,这些网络的体系结构是精确确定的。对Varmion解决方案中误差的分析表明,它包含训练数据中的误差,训练错误,抽样输入中的正交误差和输出功能的贡献,以及测量测试输入功能之间距离的“覆盖错误”以及培训数据集中最近的功能。这也取决于确切网络及其varmion近似的稳定性常数。 Varmion在规范椭圆形PDE中的应用表明,对于大约相同数量的网络参数,平均而言,Varmion的误差比标准DeepOnet较小。此外,其性能对于输入函数的变化,用于采样输入和输出功能的技术,用于构建基本函数的技术以及输入函数的数量更为强大。
translated by 谷歌翻译
In this work, we study the numerical solution of inverse eigenvalue problems from a machine learning perspective. Two different problems are considered: the inverse Strum-Liouville eigenvalue problem for symmetric potentials and the inverse transmission eigenvalue problem for spherically symmetric refractive indices. Firstly, we solve the corresponding direct problems to produce the required eigenvalues datasets in order to train the machine learning algorithms. Next, we consider several examples of inverse problems and compare the performance of each model to predict the unknown potentials and refractive indices respectively, from a given small set of the lowest eigenvalues. The supervised regression models we use are k-Nearest Neighbours, Random Forests and Multi-Layer Perceptron. Our experiments show that these machine learning methods, under appropriate tuning on their parameters, can numerically solve the examined inverse eigenvalue problems.
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
神经网络是通用函数近似器,尽管过度参数过多,但已知可以很好地概括。我们从神经网络的光谱偏置的角度研究了这种现象。我们的贡献是两个方面。首先,我们通过利用与有限元方法理论的联系来为Relu神经网络的光谱偏置提供理论解释。其次,基于该理论,我们预测将激活函数切换到分段线性B-Spline(即HAT函数)将消除这种频谱偏置,我们在各种设置中进行经验验证。我们的经验研究还表明,使用随机梯度下降和ADAM对具有HAT激活功能的神经网络进行了更快的训练。结合以前的工作表明,HAT激活功能还提高了图像分类任务的概括精度,这表明使用HAT激活在某些问题上具有重大优势。
translated by 谷歌翻译
深度学习表明了视觉识别和某些人工智能任务的成功应用。深度学习也被认为是一种强大的工具,具有近似功能的高度灵活性。在本工作中,设计具有所需属性的功能,以近似PDE的解决方案。我们的方法基于后验误差估计,其中解决了错误定位以在神经网络框架内制定误差估计器的伴随问题。开发了一种高效且易于实现的算法,以通过采用双重加权剩余方法来获得多个目标功能的后验误差估计,然后使用神经网络计算原始和伴随解决方案。本研究表明,即使具有相对较少的训练数据,这种基于数据驱动的模型的学习具有卓越的感兴趣量的近似。用数值测试实施例证实了新颖的算法发展。证明了在浅神经网络上使用深神经网络的优点,并且还呈现了收敛增强技术
translated by 谷歌翻译
在本文中,开发了一种新的不连续性捕获浅神经网络(DCSNN),以近似于$ d $ d $二维的分段连续功能和解决椭圆界面问题。当前网络中有三个新颖的功能。即,(i)跳跃不连续性被准确捕获,(ii)它完全浅,仅包含一个隐藏层,(iii)它完全无网格,用于求解部分微分方程。这里的关键想法是,可以将$ d $维的分段连续函数扩展到$(d+1)$ - 尺寸空间中定义的连续函数,其中增强坐标变量标记每个子域的零件。然后,我们构建一个浅神经网络来表达这一新功能。由于仅使用一个隐藏层,因此训练参数(权重和偏见)的数量与隐藏层中使用的维度和神经元线性缩放。为了解决椭圆界面问题,通过最大程度地减少由管理方程式,边界条件和接口跳跃条件组成的均方误差损失来训练网络。我们执行一系列数值测试以证明本网络的准确性。我们的DCSNN模型由于仅需要训练的参数数量中等(在所有数值示例中使用了几百个参数),因此很有效,结果表明准确性良好。与传统的基于网格的浸入界面方法(IIM)获得的结果相比,该方法专门针对椭圆界面问题而设计,我们的网络模型比IIM表现出更好的精度。我们通过解决一个六维问题来结论,以证明本网络在高维应用中的能力。
translated by 谷歌翻译
在这项工作中,我们分析了不同程度的不同精度和分段多项式测试函数如何影响变异物理学知情神经网络(VPINN)的收敛速率,同时解决椭圆边界边界值问题,如何影响变异物理学知情神经网络(VPINN)的收敛速率。使用依靠INF-SUP条件的Petrov-Galerkin框架,我们在精确解决方案和合适的计算神经网络的合适的高阶分段插值之间得出了一个先验误差估计。数值实验证实了理论预测并突出了INF-SUP条件的重要性。我们的结果表明,以某种方式违反直觉,对于平滑解决方案,实现高衰减率的最佳策略在选择最低多项式程度的测试功能方面,同时使用适当高精度的正交公式。
translated by 谷歌翻译
物理知情的神经网络(PINN)要求定期的基础PDE解决方案,以确保准确的近似值。因此,它们可能会在近似PDE的不连续溶液(例如非线性双曲方程)的情况下失败。为了改善这一点,我们提出了一种新颖的PINN变体,称为弱PINN(WPINNS),以准确地近似标量保护定律的熵溶液。WPINN是基于近似于根据Kruzkhov熵定义的残留的最小最大优化问题的解决方案,以确定近似熵解决方案的神经网络的参数以及测试功能。我们证明了WPINN发生的误差的严格界限,并通过数值实验说明了它们的性能,以证明WPINN可以准确地近似熵解决方案。
translated by 谷歌翻译
我们提出了一种基于机器学习的新型混合策略,以改善水平集方法中的曲率估计。提出的推理系统伴侣使用标准数值方案增强了神经网络,以更准确地计算曲率。我们混合框架的核心是一种开关机制,依赖于确定的数值技术来衡量曲率。如果曲率幅度大于依赖分辨率的阈值,则使用神经网络来产生更好的近似值。我们的网络是安装在各种配置下由正弦和圆形接口样品组成的合成数据集的多层感知器。为了降低数据集大小和训练复杂性,我们利用问题的特征对称性,并在曲率光谱的一半上构建模型。这些储蓄导致一个强大的推理系统能够仅胜过其任何数值或神经成分。具有固定,平滑接口的实验表明,我们的混合求解器在粗网格和陡峭的界面区域中明显优于常规数值方法。与先前的研究相比,我们已经观察到通过从多个接口类型的数据对训练回归模型后的精确提高,并使用专门的输入预处理转换数据。特别是,我们的发现证实机器学习是减少或消除级别方法中质量损失的有希望的场所。
translated by 谷歌翻译
在本文中,我们提出了一种求解高维椭圆局部微分方程(PDE)的半群方法和基于神经网络的相关特征值问题。对于PDE问题,我们在半群运营商的帮助下将原始方程式重构为变分问题,然后解决神经网络(NN)参数化的变分问题。主要优点是在随机梯度下降训练期间不需要混合的二阶衍生计算,并且由半群运算符自动考虑边界条件。与Pinn \ Cite {Raissi2019physics}和DeepRitz \ Cite {Weinan2018Deep}不同的流行方法,其中仅通过惩罚功能强制执行,因此改变了真实解决方案,所提出的方法能够解决没有惩罚功能的边界条件它即使添加了惩罚功能,它也会给出正确的真实解决方案,感谢semigoup运算符。对于特征值问题,提出了一种原始方法,有效地解析了简单的标量双变量的约束,并与BSDE求解器\ Cite {Han202020Solving}相比,诸如与线性相关的特征值问题之类的问题相比,算法更快地算法SCHR \“Odinger操作员。提供了数值结果以证明所提出的方法的性能。
translated by 谷歌翻译