文本分类的对比预制技术已经在一个无人监督的环境中进行了很大程度上。但是,通常可以使用与当前任务共享标签语义的相关任务的数据。我们假设使用此标记数据有效地导致当前任务的更好的概括。在本文中,我们提出了一种新的方法来利用基于曲线图的监督对比学习方法有效地利用相关任务的标记数据。我们通过将监督信息从示例推断到令牌来制定令牌图。我们的配方导致嵌入空间的嵌入空间,其中具有相同类的高/低概率的令牌彼此接近/进一步。我们还开发了详细的理论见解,该洞察力作为我们方法的动机。在我们的实验中,我们将展示我们的方法以2.5美元的价格优于预先预订计划,以及基于1,8 \%$ 1.8 \%$ 1.8 \%$ 1.8 \%$ 1.8 \%$ 1.8 \%。此外,我们在零击设置中显示了我们的方法的跨域效果,平均每次3.91 \%$ 3.91 \%。最后,我们还展示了我们的方法可以用作知识蒸馏设定中的嘈杂教师,以显着提高基于变压器的模型在低标记的数据制度中的性能,平均为4.57 \%$ 4.57 \%。
translated by 谷歌翻译
作为自然语言处理领域(NLP)领域的广泛研究,基于方面的情感分析(ABSA)是预测文本中相对于相应方面所表达的情感的任务。不幸的是,大多数语言缺乏足够的注释资源,因此越来越多的研究人员专注于跨语义方面的情感分析(XABSA)。但是,最近的研究仅集中于跨语性数据对准而不是模型对齐。为此,我们提出了一个新颖的框架CL-XABSA:基于跨语言的情感分析的对比度学习。基于对比度学习,我们在不同的语义空间中关闭具有相同标签的样品之间的距离,从而实现了不同语言的语义空间的收敛。具体而言,我们设计了两种对比策略,即代币嵌入(TL-CTE)和情感水平的对比度学习,对代币嵌入(SL-CTE)的对比度学习,以使源语言和目标语言的语义空间正规化,以使其更加统一。由于我们的框架可以在培训期间以多种语言接收数据集,因此我们的框架不仅可以适应XABSA任务,而且可以针对基于多语言的情感分析(MABSA)进行调整。为了进一步提高模型的性能,我们执行知识蒸馏技术利用未标记的目标语言的数据。在蒸馏XABSA任务中,我们进一步探讨了不同数据(源数据集,翻译数据集和代码切换数据集)的比较有效性。结果表明,所提出的方法在XABSA,蒸馏XABSA和MABSA的三个任务中具有一定的改进。为了获得可重复性,我们的本文代码可在https://github.com/gklmip/cl-xabsa上获得。
translated by 谷歌翻译
在这项工作中,我们以一种充满挑战的自我监督方法研究无监督的领域适应性(UDA)。困难之一是如何在没有目标标签的情况下学习任务歧视。与以前的文献直接使跨域分布或利用反向梯度保持一致,我们建议域混淆对比度学习(DCCL),以通过域难题桥接源和目标域,并在适应后保留歧视性表示。从技术上讲,DCCL搜索了最大的挑战方向,而精美的工艺领域将增强型混淆为正对,然后对比鼓励该模型向其他领域提取陈述,从而学习更稳定和有效的域名。我们还研究对比度学习在执行其他数据增强时是否必然有助于UDA。广泛的实验表明,DCCL明显优于基准。
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
跨域情绪分析旨在使用在源域上训练的模型来预测目标域中文本的情感,以应对标记数据的稀缺性。先前的研究主要是针对任务的基于跨透明的方法,这些方法受到不稳定性和泛化不良的方式。在本文中,我们探讨了有关跨域情绪分析任务的对比度学习。我们提出了一个经过修改的对比度目标,其中包括隔离式负面样本,以便将同一类的句子表示将被推开,而来自不同类别的句子表示在潜在空间中进一步分开。在两个广泛使用的数据集上进行的实验表明,我们的模型可以在跨域和多域情绪分析任务中实现最先进的性能。同时,可视化证明了在源域中学习的知识转移到目标域的有效性,并且对抗性测试验证了我们模型的鲁棒性。
translated by 谷歌翻译
图形存在于许多现实世界中的应用中,例如财务欺诈检测,商业建议和社交网络分析。但是,鉴于图形注释或标记的高成本,我们面临严重的图形标签 - 刻度问题,即,图可能具有一些标记的节点。这样一个问题的一个例子是所谓的\ textit {少数弹性节点分类}。该问题的主要方法均依靠\ textit {情节元学习}。在这项工作中,我们通过提出一个基本问题来挑战现状,元学习是否是对几个弹性节点分类任务的必要条件。我们在标准的几杆节点分类设置下提出了一个新的简单框架,作为学习有效图形编码器的元学习的替代方法。该框架由有监督的图形对比学习以及新颖的数据增强,子图编码和图形上的多尺度对比度组成。在三个基准数据集(Corafull,Reddit,OGBN)上进行的广泛实验表明,新框架显着胜过基于最先进的元学习方法。
translated by 谷歌翻译
Semi-supervised learning lately has shown much promise in improving deep learning models when labeled data is scarce. Common among recent approaches is the use of consistency training on a large amount of unlabeled data to constrain model predictions to be invariant to input noise. In this work, we present a new perspective on how to effectively noise unlabeled examples and argue that the quality of noising, specifically those produced by advanced data augmentation methods, plays a crucial role in semi-supervised learning. By substituting simple noising operations with advanced data augmentation methods such as RandAugment and back-translation, our method brings substantial improvements across six language and three vision tasks under the same consistency training framework. On the IMDb text classification dataset, with only 20 labeled examples, our method achieves an error rate of 4.20, outperforming the state-of-the-art model trained on 25,000 labeled examples. On a standard semi-supervised learning benchmark, CIFAR-10, our method outperforms all previous approaches and achieves an error rate of 5.43 with only 250 examples. Our method also combines well with transfer learning, e.g., when finetuning from BERT, and yields improvements in high-data regime, such as ImageNet, whether when there is only 10% labeled data or when a full labeled set with 1.3M extra unlabeled examples is used. 1
translated by 谷歌翻译
This paper presents E5, a family of state-of-the-art text embeddings that transfer well to a wide range of tasks. The model is trained in a contrastive manner with weak supervision signals from our curated large-scale text pair dataset (called CCPairs). E5 can be readily used as a general-purpose embedding model for any tasks requiring a single-vector representation of texts such as retrieval, clustering, and classification, achieving strong performance in both zero-shot and fine-tuned settings. We conduct extensive evaluations on 56 datasets from the BEIR and MTEB benchmarks. For zero-shot settings, E5 is the first model that outperforms the strong BM25 baseline on the BEIR retrieval benchmark without using any labeled data. When fine-tuned, E5 obtains the best results on the MTEB benchmark, beating existing embedding models with 40x more parameters.
translated by 谷歌翻译
我们介绍了一种新的损失函数TriplePropy,提高微调普通知识的分类性能,基于交叉熵和软损失。这种损失功能可以通过跨熵损失改善强大的罗伯拉基线模型,大约(0.02% - 2.29%)。对流行数据集的彻底测试表示稳定增益。训练数据集中的样品越小,增益越高,对于小型数据集而言,其为0.78%,用于中等大小 - 0.86%,大约0.20%,超大0.04%。
translated by 谷歌翻译
从积极和未标记的(PU)数据中学习是一种设置,学习者只能访问正面和未标记的样本,而没有关于负面示例的信息。这种PU环境在各种任务中非常重要,例如医学诊断,社交网络分析,金融市场分析和知识基础完成,这些任务也往往本质上是不平衡的,即大多数示例实际上是负面的。但是,大多数现有的PU学习方法仅考虑人工平衡的数据集,目前尚不清楚它们在不平衡和长尾数据分布的现实情况下的表现如何。本文提议通过强大而有效的自我监督预处理来应对这一挑战。但是,培训传统的自我监督学习方法使用高度不平衡的PU分布需要更好的重新重新制定。在本文中,我们提出\ textit {Impulses},这是\ usewanced {im}平衡\下划线{p} osive \ unesive \ usepline {u} nlabeLed \ underline {l}的统一表示的学习框架{p}。 \下划线{s}削弱了debiase预训练。 Impulses使用大规模无监督学习的通用组合以及对比度损失和额外重新持续的PU损失的一般组合。我们在多个数据集上进行了不同的实验,以表明Impuls能够使先前最新的错误率减半,即使与先前给出的真实先验的方法相比。此外,即使在无关的数据集上进行了预处理,我们的方法也表现出对事先错误指定和卓越性能的鲁棒性。我们预计,这种稳健性和效率将使从业者更容易在其他感兴趣的PU数据集上获得出色的结果。源代码可在\ url {https://github.com/jschweisthal/impulses}中获得
translated by 谷歌翻译
近年来,预制语言模型彻底改变了NLP世界,同时在各种下游任务中实现了最先进的性能。但是,在许多情况下,当标记数据稀缺时,这些模型不会表现良好,并且预计模型将在零或几秒钟内执行。最近,有几项工作表明,与下游任务更好地对准的预先预测或执行第二阶段,可以导致改进的结果,尤其是在稀缺数据设置中。在此,我们建议利用携带的情绪话语标记来产生大规模的弱标记数据,这又可以用于适应语言模型进行情感分析。广泛的实验结果显示了我们在各种基准数据集中的方法的价值,包括金融域。在https://github.com/ibm/tslm-discourse-markers上提供代码,模型和数据。
translated by 谷歌翻译
变量名称对于传达预期的程序行为至关重要。基于机器学习的程序分析方法使用变量名称表示广泛的任务,例如建议新的变量名称和错误检测。理想情况下,这些方法可以捕获句法相似性的名称之间的语义关系,例如,名称平均和均值的事实是相似的。不幸的是,以前的工作发现,即使是先前的最佳的表示方法主要是捕获相关性(是否有两个变量始终链接),而不是相似性(是否具有相同的含义)。我们提出了VarCLR,一种用于学习变量名称的语义表示的新方法,这些方法有效地捕获了这种更严格的意义上的可变相似性。我们观察到这个问题是对比学习的优秀契合,旨在最小化明确类似的输入之间的距离,同时最大化不同输入之间的距离。这需要标记的培训数据,因此我们构建了一种新颖的弱监督的变量重命名数据集,从GitHub编辑开采。我们表明VarCLR能够有效地应用BERT等复杂的通用语言模型,以变为变量名称表示,因此也是与变量名称相似性搜索或拼写校正等相关的下游任务。 varclr产生模型,显着越优于idbench的最先进的现有基准,明确地捕获可变相似度(与相关性不同)。最后,我们贡献了所有数据,代码和预先训练模型的版本,旨在为现有或未来程序分析中使用的可变表示提供的可变表示的替代品。
translated by 谷歌翻译
Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.
translated by 谷歌翻译
存在预训练模型在各种文本分类任务上取得了最先进的性能。这些模型已被证明可用于学习普遍语言表示。然而,通过先进的预训练模型无法有效地区分类似文本之间的语义差异,这对难以区分类的性能产生了很大的影响。为了解决这个问题,我们在这项工作中提出了一种与标签距离(CLLD)的新型对比学习。灵感来自最近对比学习的进步,我们专门设计了一种具有标签距离的分类方法,用于学习对比类。 CLLD可确保在导致不同标签分配的细微差别中的灵活性,并为同时具有相似性的每个类生成不同的表示。关于公共基准和内部数据集的广泛实验表明,我们的方法提高了预先训练模型在分类任务上的性能。重要的是,我们的实验表明,学习的标签距离减轻了细胞的对抗性质。
translated by 谷歌翻译
我们从第一批原则提供了一个理论分析,该原则在预训练和微调性能的关系归纳偏差之间建立了新的联系,同时提供了一般预训练模型的延长视图。我们进一步探讨了现有的预训练方法如何强加相关的归纳偏差,发现绝大多数现有方法几乎专注于以帧内方式建模的关系,而不是每种样本方式。我们建立了这些调查结果,这些发现与跨越3个数据模式和10个下游任务的标准基准测试。这些调查验证了我们的理论分析,并提供了一种方法,以产生新的预训练方法,该方法与现有的方法符合用户指定的关系图。
translated by 谷歌翻译
基于图的异常检测已被广泛用于检测现实世界应用中的恶意活动。迄今为止,现有的解决此问题的尝试集中在二进制分类制度中的结构特征工程或学习上。在这项工作中,我们建议利用图形对比编码,并提出监督的GCCAD模型,以将异常节点与正常节点的距离与全球环境(例如所有节点的平均值)相比。为了使用稀缺标签处理场景,我们通过设计用于生成合成节点标签的图形损坏策略,进一步使GCCAD成为一个自制的框架。为了实现对比目标,我们设计了一个图形神经网络编码器,该编码器可以在消息传递过程中推断并进一步删除可疑链接,并了解输入图的全局上下文。我们在四个公共数据集上进行了广泛的实验,表明1)GCCAD显着且始终如一地超过各种高级基线,2)其自我监督版本没有微调可以通过其完全监督的版本来实现可比性的性能。
translated by 谷歌翻译
无监督的图形表示学习是图形数据的非琐碎主题。在结构化数据的无监督代表学习中对比学习和自我监督学习的成功激发了图表上的类似尝试。使用对比损耗的当前无监督的图形表示学习和预培训主要基于手工增强图数据之间的对比度。但是,由于不可预测的不变性,图数据增强仍然没有很好地探索。在本文中,我们提出了一种新颖的协作图形神经网络对比学习框架(CGCL),它使用多个图形编码器来观察图形。不同视图观察的特征充当了图形编码器之间对比学习的图表增强,避免了任何扰动以保证不变性。 CGCL能够处理图形级和节点级表示学习。广泛的实验表明CGCL在无监督的图表表示学习中的优势以及图形表示学习的手工数据增强组合的非必要性。
translated by 谷歌翻译
最近,已证明有监督的对比度学习(SCL)在大多数分类任务中都能取得出色的表现。在SCL中,对神经网络进行了训练,可以优化两个目标:在嵌入空间中将锚定和阳性样品一起拉在一起,并将锚点推开。但是,这两个不同的目标可能需要冲突,需要在优化期间之间进行权衡。在这项工作中,我们将SCL问题作为Roberta语言模型的微调阶段的多目标优化问题。使用两种方法来解决优化问题:(i)线性标量(LS)方法,该方法可最大程度地减少持久性损失的加权线性组合; (ii)确切的帕累托最佳(EPO)方法,该方法找到了帕累托正面与给定优先矢量的相交。我们在不使用数据增强,内存库或生成对抗性示例的情况下评估了几个胶合基准任务的方法。经验结果表明,提出的学习策略大大优于强大的竞争性学习基线
translated by 谷歌翻译
图神经网络(GNN)在学习图表表示方面取得了巨大成功,从而促进了各种与图形相关的任务。但是,大多数GNN方法都采用监督的学习设置,由于难以获得标记的数据,因此在现实世界中并不总是可行的。因此,图表自学学习一直在吸引越来越多的关注。图对比度学习(GCL)是自我监督学习的代表性框架。通常,GCL通过将语义上相似的节点(阳性样品)和不同的节点(阴性样品)与锚节点进行对比来学习节点表示。没有访问标签,通常通过数据增强产生阳性样品,而负样品是从整个图中均匀采样的,这导致了亚最佳目标。具体而言,数据增强自然限制了该过程中涉及的正样本的数量(通常只采用一个阳性样本)。另一方面,随机采样过程不可避免地选择假阴性样品(样品与锚共享相同的语义)。这些问题限制了GCL的学习能力。在这项工作中,我们提出了一个增强的目标,以解决上述问题。我们首先引入了一个不可能实现的理想目标,该目标包含所有正样本,没有假阴性样本。然后,基于对阳性和负样品进行采样的分布,将这个理想的目标转化为概率形式。然后,我们以节点相似性对这些分布进行建模,并得出增强的目标。各种数据集上的全面实验证明了在不同设置下提出的增强目标的有效性。
translated by 谷歌翻译
Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets. 1
translated by 谷歌翻译