跨域情绪分析旨在使用在源域上训练的模型来预测目标域中文本的情感,以应对标记数据的稀缺性。先前的研究主要是针对任务的基于跨透明的方法,这些方法受到不稳定性和泛化不良的方式。在本文中,我们探讨了有关跨域情绪分析任务的对比度学习。我们提出了一个经过修改的对比度目标,其中包括隔离式负面样本,以便将同一类的句子表示将被推开,而来自不同类别的句子表示在潜在空间中进一步分开。在两个广泛使用的数据集上进行的实验表明,我们的模型可以在跨域和多域情绪分析任务中实现最先进的性能。同时,可视化证明了在源域中学习的知识转移到目标域的有效性,并且对抗性测试验证了我们模型的鲁棒性。
translated by 谷歌翻译
在这项工作中,我们以一种充满挑战的自我监督方法研究无监督的领域适应性(UDA)。困难之一是如何在没有目标标签的情况下学习任务歧视。与以前的文献直接使跨域分布或利用反向梯度保持一致,我们建议域混淆对比度学习(DCCL),以通过域难题桥接源和目标域,并在适应后保留歧视性表示。从技术上讲,DCCL搜索了最大的挑战方向,而精美的工艺领域将增强型混淆为正对,然后对比鼓励该模型向其他领域提取陈述,从而学习更稳定和有效的域名。我们还研究对比度学习在执行其他数据增强时是否必然有助于UDA。广泛的实验表明,DCCL明显优于基准。
translated by 谷歌翻译
对比的学习技术已广泛用于计算机视野中作为增强数据集的手段。在本文中,我们将这些对比学习嵌入的使用扩展到情绪分析任务,并证明了对这些嵌入的微调在基于BERT的嵌入物上的微调方面提供了改进,以在评估时实现更高的基准。在Dynasent DataSet上。我们还探讨了我们的微调模型在跨域基准数据集上执行的。此外,我们探索了ups采样技术,以实现更平衡的班级分发,以进一步改进我们的基准任务。
translated by 谷歌翻译
作为自然语言处理领域(NLP)领域的广泛研究,基于方面的情感分析(ABSA)是预测文本中相对于相应方面所表达的情感的任务。不幸的是,大多数语言缺乏足够的注释资源,因此越来越多的研究人员专注于跨语义方面的情感分析(XABSA)。但是,最近的研究仅集中于跨语性数据对准而不是模型对齐。为此,我们提出了一个新颖的框架CL-XABSA:基于跨语言的情感分析的对比度学习。基于对比度学习,我们在不同的语义空间中关闭具有相同标签的样品之间的距离,从而实现了不同语言的语义空间的收敛。具体而言,我们设计了两种对比策略,即代币嵌入(TL-CTE)和情感水平的对比度学习,对代币嵌入(SL-CTE)的对比度学习,以使源语言和目标语言的语义空间正规化,以使其更加统一。由于我们的框架可以在培训期间以多种语言接收数据集,因此我们的框架不仅可以适应XABSA任务,而且可以针对基于多语言的情感分析(MABSA)进行调整。为了进一步提高模型的性能,我们执行知识蒸馏技术利用未标记的目标语言的数据。在蒸馏XABSA任务中,我们进一步探讨了不同数据(源数据集,翻译数据集和代码切换数据集)的比较有效性。结果表明,所提出的方法在XABSA,蒸馏XABSA和MABSA的三个任务中具有一定的改进。为了获得可重复性,我们的本文代码可在https://github.com/gklmip/cl-xabsa上获得。
translated by 谷歌翻译
Aspect-based sentiment analysis (ABSA) aims at extracting opinionated aspect terms in review texts and determining their sentiment polarities, which is widely studied in both academia and industry. As a fine-grained classification task, the annotation cost is extremely high. Domain adaptation is a popular solution to alleviate the data deficiency issue in new domains by transferring common knowledge across domains. Most cross-domain ABSA studies are based on structure correspondence learning (SCL), and use pivot features to construct auxiliary tasks for narrowing down the gap between domains. However, their pivot-based auxiliary tasks can only transfer knowledge of aspect terms but not sentiment, limiting the performance of existing models. In this work, we propose a novel Syntax-guided Domain Adaptation Model, named SDAM, for more effective cross-domain ABSA. SDAM exploits syntactic structure similarities for building pseudo training instances, during which aspect terms of target domain are explicitly related to sentiment polarities. Besides, we propose a syntax-based BERT mask language model for further capturing domain-invariant features. Finally, to alleviate the sentiment inconsistency issue in multi-gram aspect terms, we introduce a span-based joint aspect term and sentiment analysis module into the cross-domain End2End ABSA. Experiments on five benchmark datasets show that our model consistently outperforms the state-of-the-art baselines with respect to Micro-F1 metric for the cross-domain End2End ABSA task.
translated by 谷歌翻译
自我监督的学习方法,如对比学习,在自然语言处理中非常重视。它使用对培训数据增强对具有良好表示能力的编码器构建分类任务。然而,在对比学习的学习成对的构建在NLP任务中更难。以前的作品生成单词级更改以形成对,但小变换可能会导致句子含义的显着变化作为自然语言的离散和稀疏性质。在本文中,对对抗的训练在NLP的嵌入空间中产生了挑战性和更难的学习对抗性示例作为学习对。使用对比学学习提高了对抗性培训的泛化能力,因为对比损失可以使样品分布均匀。同时,对抗性培训也提高了对比学习的稳健性。提出了两种小说框架,监督对比对抗学习(SCAS)和无监督的SCAS(USCAL),通过利用对比学习的对抗性培训来产生学习成对。利用基于标签的监督任务丢失,以产生对抗性示例,而无监督的任务会带来对比损失。为了验证所提出的框架的有效性,我们将其雇用到基于变换器的模型,用于自然语言理解,句子语义文本相似性和对抗学习任务。胶水基准任务的实验结果表明,我们的微调监督方法优于BERT $ _ {基础} $超过1.75 \%。我们还评估我们对语义文本相似性(STS)任务的无监督方法,并且我们的方法获得77.29 \%with bert $ _ {base} $。我们方法的稳健性在NLI任务的多个对抗性数据集下进行最先进的结果。
translated by 谷歌翻译
Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets. 1
translated by 谷歌翻译
这些年来跨域情绪分类一直是一个热点,旨在使用来自源域的标记数据来学习可靠的分类器,并在目标域上进行评估。在此静脉中,大多数方法利用域适应,将数据从不同域映射到共同的特征空间。为了进一步提高模型性能,提出了针对挖掘域特定信息的几种方法。但是,其中大多数仅利用有限的域特定信息。在这项研究中,我们首先通过基于主题信息制定一种提取特定域的单词的方法。然后,我们提出了一个主题驱动的自适应网络(TDAN),用于跨域情绪分类。该网络由两个子网络组成:语义注意网络和域特定的单词注意网络,其结构基于变压器。这些子网采用不同的输入形式,并且它们的输出被融合为特征向量。实验验证了我们TDAN对跨域情绪分类的有效性。
translated by 谷歌翻译
基于方面的情绪分析旨在确定产品评论中特定方面的情感极性。我们注意到,大约30%的评论不包含明显的观点词,但仍然可以传达清晰的人类感知情绪取向,称为隐含情绪。然而,最近的基于神经网络的方法几乎没有关注隐性情绪,这一审查有所关注。为了克服这个问题,我们通过域名语言资源检索的大规模情绪注释的Corpora采用监督对比培训。通过将隐式情感表达式的表示对准与具有相同情绪标签的人,预培训过程可以更好地捕获隐含和明确的情绪方向,以便在评论中的方面。实验结果表明,我们的方法在Semeval2014基准上实现了最先进的性能,综合分析验证了其对学习隐含情绪的有效性。
translated by 谷歌翻译
Cross-domain few-shot relation extraction poses a great challenge for the existing few-shot learning methods and domain adaptation methods when the source domain and target domain have large discrepancies. This paper proposes a method by combining the idea of few-shot learning and domain adaptation to deal with this problem. In the proposed method, an encoder, learned by optimizing a representation loss and an adversarial loss, is used to extract the relation of sentences in the source and target domain. The representation loss, including a cross-entropy loss and a contrastive loss, makes the encoder extract the relation of the source domain and keep the geometric structure of the classes in the source domain. And the adversarial loss is used to merge the source domain and target domain. The experimental results on the benchmark FewRel dataset demonstrate that the proposed method can outperform some state-of-the-art methods.
translated by 谷歌翻译
对比学习被出现为强大的代表学习方法,促进各种下游任务,特别是当监督数据有限时。如何通过数据增强构建有效的对比样本是其成功的关键。与视觉任务不同,语言任务中尚未对对比学习进行对比学习的数据增强方法。在本文中,我们提出了一种使用文本摘要构建语言任务的对比样本的新方法。我们使用这些样本进行监督的对比学习,以获得更好的文本表示,这极大地利用了具有有限注释的文本分类任务。为了进一步改进该方法,除了交叉熵损失之外,我们将从不同类中的样本混合并添加一个名为MIXSUM的额外正则化。真实世界文本分类数据集(Amazon-5,Yelp-5,AG新闻和IMDB)的实验展示了基于摘要的数据增强和MIXSUM正规化的提议对比学习框架的有效性。
translated by 谷歌翻译
概括跨越不同视觉域的学习表现的能力,例如在真正的照片,剪贴画,绘画和草图之间是人类视觉系统的基本容量。在本文中,不同于利用一些(或全部)源域监控的大多数跨域工作,我们接近一个相对较新的,非常实用的无监督域泛化(UDG)设置在既不源也不在源域中没有培训监督。我们的方法是基于跨域(BRAD)的桥梁​​的自我监督学习 - 辅助桥域附有一组从每个训练域的Brad将视觉(图像到图像)映射保留的一组语义。 BRAD和MAPPAPAPPED(端到端)与对比的自我监督表示模型一起学习(端到端),其用语义对齐每个域将每个域对齐,因此隐含地驱动所有域(见或看不见)语义上彼此对齐。在这项工作中,我们展示了如何使用边缘正则化的布拉德,我们的方法在多个基准和一系列任务中实现了显着的增益,包括UDG,少量UDA和跨多个域数据集的无监督概括(包括指向未经看明域的概念和课程)。
translated by 谷歌翻译
存在预训练模型在各种文本分类任务上取得了最先进的性能。这些模型已被证明可用于学习普遍语言表示。然而,通过先进的预训练模型无法有效地区分类似文本之间的语义差异,这对难以区分类的性能产生了很大的影响。为了解决这个问题,我们在这项工作中提出了一种与标签距离(CLLD)的新型对比学习。灵感来自最近对比学习的进步,我们专门设计了一种具有标签距离的分类方法,用于学习对比类。 CLLD可确保在导致不同标签分配的细微差别中的灵活性,并为同时具有相似性的每个类生成不同的表示。关于公共基准和内部数据集的广泛实验表明,我们的方法提高了预先训练模型在分类任务上的性能。重要的是,我们的实验表明,学习的标签距离减轻了细胞的对抗性质。
translated by 谷歌翻译
立场检测任务旨在对给定文件和主题的立场进行分类。由于该主题可以隐含在文档中,并且在零摄影设置的培训数据中看不见,因此我们建议通过使用情感和常识知识来提高立场检测模型的可传递性,这在先前的研究中很少考虑。我们的模型包括一个图形自动编码器模块,以获取常识性知识和带有情感和常识的立场检测模块。实验结果表明,我们的模型优于零射击和少量基准数据集(VAST)上的最新方法。同时,消融研究证明了我们模型中每个模块的重要性。对情感,常识和立场之间关系的分析表明了情感和常识的有效性。
translated by 谷歌翻译
As an important fine-grained sentiment analysis problem, aspect-based sentiment analysis (ABSA), aiming to analyze and understand people's opinions at the aspect level, has been attracting considerable interest in the last decade. To handle ABSA in different scenarios, various tasks are introduced for analyzing different sentiment elements and their relations, including the aspect term, aspect category, opinion term, and sentiment polarity. Unlike early ABSA works focusing on a single sentiment element, many compound ABSA tasks involving multiple elements have been studied in recent years for capturing more complete aspect-level sentiment information. However, a systematic review of various ABSA tasks and their corresponding solutions is still lacking, which we aim to fill in this survey. More specifically, we provide a new taxonomy for ABSA which organizes existing studies from the axes of concerned sentiment elements, with an emphasis on recent advances of compound ABSA tasks. From the perspective of solutions, we summarize the utilization of pre-trained language models for ABSA, which improved the performance of ABSA to a new stage. Besides, techniques for building more practical ABSA systems in cross-domain/lingual scenarios are discussed. Finally, we review some emerging topics and discuss some open challenges to outlook potential future directions of ABSA.
translated by 谷歌翻译
This paper presents SimCSE, a simple contrastive learning framework that greatly advances state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We find that dropout acts as minimal data augmentation, and removing it leads to a representation collapse. Then, we propose a supervised approach, which incorporates annotated pairs from natural language inference datasets into our contrastive learning framework by using "entailment" pairs as positives and "contradiction" pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT base achieve an average of 76.3% and 81.6% Spearman's correlation respectively, a 4.2% and 2.2% improvement compared to the previous best results. We also show-both theoretically and empirically-that the contrastive learning objective regularizes pre-trained embeddings' anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available. 1 2 We randomly sample 10 6 sentences from English Wikipedia and fine-tune BERTbase with learning rate = 3e-5, N = 64. In all our experiments, no STS training sets are used.
translated by 谷歌翻译
为了开发有效的顺序推荐人,提出了一系列序列表示学习(SRL)方法来模拟历史用户行为。大多数现有的SRL方法都依赖于开发序列模型以更好地捕获用户偏好的明确项目ID。尽管在某种程度上有效,但由于通过明确建模项目ID的限制,这些方法很难转移到新的建议方案。为了解决这个问题,我们提出了一种新颖的通用序列表示方法,名为UNISREC。提出的方法利用项目的文本在不同的建议方案中学习可转移表示形式。为了学习通用项目表示形式,我们设计了一个基于参数美白和Experts的混合物增强的适配器的轻巧项目编码体系结构。为了学习通用序列表示,我们通过抽样多域负面因素介绍了两个对比的预训练任务。借助预训练的通用序列表示模型,我们的方法可以在电感或跨传导设置下以参数有效的方式有效地传输到新的推荐域或平台。在现实世界数据集上进行的广泛实验证明了该方法的有效性。尤其是,我们的方法还导致跨平台环境中的性能提高,显示了所提出的通用SRL方法的强可传递性。代码和预培训模型可在以下网址获得:https://github.com/rucaibox/unisrec。
translated by 谷歌翻译
最近,已证明有监督的对比度学习(SCL)在大多数分类任务中都能取得出色的表现。在SCL中,对神经网络进行了训练,可以优化两个目标:在嵌入空间中将锚定和阳性样品一起拉在一起,并将锚点推开。但是,这两个不同的目标可能需要冲突,需要在优化期间之间进行权衡。在这项工作中,我们将SCL问题作为Roberta语言模型的微调阶段的多目标优化问题。使用两种方法来解决优化问题:(i)线性标量(LS)方法,该方法可最大程度地减少持久性损失的加权线性组合; (ii)确切的帕累托最佳(EPO)方法,该方法找到了帕累托正面与给定优先矢量的相交。我们在不使用数据增强,内存库或生成对抗性示例的情况下评估了几个胶合基准任务的方法。经验结果表明,提出的学习策略大大优于强大的竞争性学习基线
translated by 谷歌翻译
文本分类的对比预制技术已经在一个无人监督的环境中进行了很大程度上。但是,通常可以使用与当前任务共享标签语义的相关任务的数据。我们假设使用此标记数据有效地导致当前任务的更好的概括。在本文中,我们提出了一种新的方法来利用基于曲线图的监督对比学习方法有效地利用相关任务的标记数据。我们通过将监督信息从示例推断到令牌来制定令牌图。我们的配方导致嵌入空间的嵌入空间,其中具有相同类的高/低概率的令牌彼此接近/进一步。我们还开发了详细的理论见解,该洞察力作为我们方法的动机。在我们的实验中,我们将展示我们的方法以2.5美元的价格优于预先预订计划,以及基于1,8 \%$ 1.8 \%$ 1.8 \%$ 1.8 \%$ 1.8 \%$ 1.8 \%。此外,我们在零击设置中显示了我们的方法的跨域效果,平均每次3.91 \%$ 3.91 \%。最后,我们还展示了我们的方法可以用作知识蒸馏设定中的嘈杂教师,以显着提高基于变压器的模型在低标记的数据制度中的性能,平均为4.57 \%$ 4.57 \%。
translated by 谷歌翻译
Pretrained large-scale vision-language models like CLIP have exhibited strong generalization over unseen tasks. Yet imperceptible adversarial perturbations can significantly reduce CLIP's performance on new tasks. In this work, we identify and explore the problem of \emph{adapting large-scale models for zero-shot adversarial robustness}. We first identify two key factors during model adaption -- training losses and adaptation methods -- that affect the model's zero-shot adversarial robustness. We then propose a text-guided contrastive adversarial training loss, which aligns the text embeddings and the adversarial visual features with contrastive learning on a small set of training data. We apply this training loss to two adaption methods, model finetuning and visual prompt tuning. We find that visual prompt tuning is more effective in the absence of texts, while finetuning wins in the existence of text guidance. Overall, our approach significantly improves the zero-shot adversarial robustness over CLIP, seeing an average improvement of over 31 points over ImageNet and 15 zero-shot datasets. We hope this work can shed light on understanding the zero-shot adversarial robustness of large-scale models.
translated by 谷歌翻译