社交网络通常是使用签名图对社交网络进行建模的,其中顶点与用户相对应,并且边缘具有一个指示用户之间的交互作用的符号。出现的签名图通常包含一个清晰的社区结构,因为该图可以分配到少数极化社区中,每个群落都定义了稀疏切割,并且不可分割地分为较小的极化亚共同体。我们为具有如此清晰的社区结构的签名图提供了本地聚类甲骨文图的小部分。正式地,当图形具有最高度且社区数量最多为$ o(\ log n)$时,则使用$ \ tilde {o}(\ sqrt {n} \ sqrt {n} \ propatatorName {poly}(1/\ varepsilon) )$预处理时间,我们的Oracle可以回答$ \ tilde {o}(\ sqrt {n} \ operatorname {poly}(1/\ varepsilon))$ time的每个成员查询,并且它正确地分类了$(1--1-(1-) \ varepsilon)$ - 顶点W.R.T.的分数一组隐藏的种植地面真实社区。我们的Oracle在仅需要少数顶点需要的聚类信息的应用中是可取的。以前,此类局部聚类牙齿仅因无符号图而闻名。我们对签名图的概括需要许多新的想法,并对随机步行的行为进行了新的光谱分析。我们评估了我们的算法,用于在合成和现实世界数据集上构建这种甲骨文和回答成员资格查询,从而在实践中验证其性能。
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译
The stochastic block model (SBM) is a fundamental model for studying graph clustering or community detection in networks. It has received great attention in the last decade and the balanced case, i.e., assuming all clusters have large size, has been well studied. However, our understanding of SBM with unbalanced communities (arguably, more relevant in practice) is still very limited. In this paper, we provide a simple SVD-based algorithm for recovering the communities in the SBM with communities of varying sizes. We improve upon a result of Ailon, Chen and Xu [ICML 2013] by removing the assumption that there is a large interval such that the sizes of clusters do not fall in. Under the planted clique conjecture, the size of the clusters that can be recovered by our algorithm is nearly optimal (up to polylogarithmic factors) when the probability parameters are constant. As a byproduct, we obtain a polynomial-time algorithm with sublinear query complexity for a clustering problem with a faulty oracle, which finds all clusters of size larger than $\tilde{\Omega}({\sqrt{n}})$ even if $\Omega(n)$ small clusters co-exist in the graph. In contrast, all the previous efficient algorithms that makes sublinear number of queries cannot recover any large cluster, if there are more than $\tilde{\Omega}(n^{2/5})$ small clusters.
translated by 谷歌翻译
Mazumdar和Saha \ Cite {MS17A}的开创性论文引入了有关聚类的广泛工作,并带有嘈杂的查询。然而,尽管在问题上取得了重大进展,但所提出的方法至关重要地取决于了解基础全随随随之而来的甲骨文错误的确切概率。在这项工作中,我们开发了可靠的学习方法,这些方法可以忍受一般的半随机噪声,从而在定性上获得与全随机模型中最佳方法相同的保证。更具体地说,给定一组$ n $点带有未知的基础分区,我们可以查询点$ u,v $检查它们是否在同一群集中,但是有了概率$ p $,答案可能可以受到对抗的选择。我们在理论上显示信息$ o \ left(\ frac {nk \ log n} {(1-2p)^2} \ right)$查询足以学习任何足够大尺寸的群集。我们的主要结果是一种计算高效算法,可以用$ o \ left(\ frac {nk \ log n} {(1-2p)^2} \ right) + \ text {poly} \ left(\ log(\ log) n,k,\ frac {1} {1-2p} \ right)$查询,与完全随机模型中最知名算法的保证相匹配。作为我们方法的推论,我们为全随机模型开发了第一个无参数算法,并通过\ cite {ms17a}回答一个空的问题。
translated by 谷歌翻译
我们开发了一种高效的随机块模型中的弱恢复算法。该算法与随机块模型的Vanilla版本的最佳已知算法的统计保证匹配。从这个意义上讲,我们的结果表明,随机块模型没有稳健性。我们的工作受到最近的银行,Mohanty和Raghavendra(SODA 2021)的工作,为相应的区别问题提供了高效的算法。我们的算法及其分析显着脱离了以前的恢复。关键挑战是我们算法的特殊优化景观:种植的分区可能远非最佳意义,即完全不相关的解决方案可以实现相同的客观值。这种现象与PCA的BBP相转变的推出效应有关。据我们所知,我们的算法是第一个在非渐近设置中存在这种推出效果的鲁棒恢复。我们的算法是基于凸优化的框架的实例化(与平方和不同的不同),这对于其他鲁棒矩阵估计问题可能是有用的。我们的分析的副产物是一种通用技术,其提高了任意强大的弱恢复算法的成功(输入的随机性)从恒定(或缓慢消失)概率以指数高概率。
translated by 谷歌翻译
图形上的分层聚类是数据挖掘和机器学习中的一项基本任务,并在系统发育学,社交网络分析和信息检索等领域中进行了应用。具体而言,我们考虑了由于Dasgupta引起的层次聚类的最近普及的目标函数。以前(大约)最小化此目标函数的算法需要线性时间/空间复杂性。在许多应用程序中,底层图的大小可能很大,即使使用线性时间/空间算法,也可以在计算上具有挑战性。结果,人们对设计只能使用sublinear资源执行全局计算的算法有浓厚的兴趣。这项工作的重点是在三个经过良好的sublinear计算模型下研究大量图的层次聚类,分别侧重于时空,时间和通信,作为要优化的主要资源:(1)(动态)流模型。边缘作为流,(2)查询模型表示,其中使用邻居和度查询查询图形,(3)MPC模型,其中图边缘通过通信通道连接的几台机器进行了分区。我们在上面的所有三个模型中设计用于层次聚类的sublinear算法。我们算法结果的核心是图表中的剪切方面的视图,这使我们能够使用宽松的剪刀示意图进行分层聚类,同时仅引入目标函数中的较小失真。然后,我们的主要算法贡献是如何在查询模型和MPC模型中有效地构建所需形式的切割稀疏器。我们通过建立几乎匹配的下限来补充我们的算法结果,该界限排除了在每个模型中设计更好的算法的可能性。
translated by 谷歌翻译
这项工作研究了经典的光谱群集算法,该算法嵌入了某些图$ g =(v_g,e_g)$的顶点,使用$ g $的某些矩阵的$ k $ eigenVectors纳入$ \ m athbb {r}^k $k $ - 分区$ v_g $ to $ k $簇。我们的第一个结果是对光谱聚类的性能进行更严格的分析,并解释了为什么它在某些条件下的作用比文献中研究的弱点要弱得多。对于第二个结果,我们表明,通过应用少于$ k $的特征向量来构建嵌入,光谱群集能够在许多实际情况下产生更好的输出;该结果是光谱聚类中的第一个结果。除了其概念性和理论意义外,我们工作的实际影响还通过对合成和现实世界数据集的经验分析证明,其中光谱聚类会产生可比或更好的结果,而较少$ k $ k $ eigenVectors。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
在这项工作中,我们研究了具有对抗性节点损坏的随机块模型中社区发现的问题。我们的主要结果是一种有效的算法,该算法可以忍受$ \ epsilon $ - 损坏和达到错误$ o(\ epsilon) + e^{ - \ frac {c} {2} {2}(1 \ pm o(1))} $其中$ c =(\ sqrt {a} - \ sqrt {b})^2 $是信噪比,$ a/n $和$ b/n $是互发和intra-intra-intra-社区连接概率分别。这些界限基本上与无损坏的SBM的最小值相匹配。我们还为$ \ mathbb {z} _2 $ -Synchronization提供了可靠的算法。我们算法的核心是一个新的半决赛程序,它使用全局信息来鲁棒提高粗糙聚类的准确性。此外,我们表明我们的算法是双重的,因为它们在更具挑战性的噪声模型中起作用,该模型将对抗性腐败与无限制的单调变化混合在一起,从半随机模型中。
translated by 谷歌翻译
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.
translated by 谷歌翻译
为了捕获许多社区检测问题的固有几何特征,我们建议使用一个新的社区随机图模型,我们称之为\ emph {几何块模型}。几何模型建立在\ emph {随机几何图}(Gilbert,1961)上,这是空间网络的随机图的基本模型之一,就像在ERD \ H上建立的良好的随机块模型一样{o} s-r \'{en} yi随机图。它也是受到社区发现中最新的理论和实际进步启发的随机社区模型的自然扩展。为了分析几何模型,我们首先为\ emph {Random Annulus图}提供新的连接结果,这是随机几何图的概括。自引入以来,已经研究了几何图的连通性特性,并且由于相关的边缘形成而很难分析它们。然后,我们使用随机环形图的连接结果来提供必要的条件,以有效地为几何块模型恢复社区。我们表明,一种简单的三角计数算法来检测几何模型中的社区几乎是最佳的。为此,我们考虑了两个图密度方案。在图表的平均程度随着顶点的对数增长的状态中,我们表明我们的算法在理论上和实际上都表现出色。相比之下,三角计数算法对于对数学度方案中随机块模型远非最佳。我们还查看了图表的平均度与顶点$ n $的数量线性增长的状态,因此要存储一个需要$ \ theta(n^2)$内存的图表。我们表明,我们的算法需要在此制度中仅存储$ o(n \ log n)$边缘以恢复潜在社区。
translated by 谷歌翻译
分层聚类研究将数据集的递归分区设置为连续较小尺寸的簇,并且是数据分析中的基本问题。在这项工作中,我们研究了Dasgupta引入的分层聚类的成本函数,并呈现了两个多项式时间近似算法:我们的第一个结果是高度电导率图的$ O(1)$ - 近似算法。我们简单的建筑绕过了在文献中已知的稀疏切割的复杂递归常规。我们的第二个和主要结果是一个US(1)$ - 用于展示群集明确结构的宽族图形的近似算法。该结果推出了以前的最先进的,该现有技术仅适用于从随机模型产生的图表。通过对合成和现实世界数据集的实证分析,我们所呈现的算法的实证分析表明了我们的工作的重要性,以其具有明确定义的集群结构的先前所提出的图表算法。
translated by 谷歌翻译
随机漫游是许多机器学习算法中使用的基本原语,其中包括聚类和半监督学习中的几种应用。尽管他们的相关性,但最近推出了第一个计算随机散步的有效并行算法(Lacki等人)。不幸的是,他们的方法具有基本缺点:它们的算法是非本地的,因为它严重依赖于计算随机从输入图中的所有节点中散布,即使在许多实际应用中只对计算随机只能从一个小子集中散步感兴趣图中的节点。在本文中,我们介绍了一种新的算法,通过同时建立随机和本地的随机行走来克服这种限制。我们表明我们的技术既存储器也又高效,特别是产生有效的并行本地聚类算法。最后,我们将我们的理论分析补充了实验结果,表明我们的算法比以前的方法更可扩展。
translated by 谷歌翻译
随机块模型(SBM)是一个随机图模型,其连接不同的顶点组不同。它被广泛用作研究聚类和社区检测的规范模型,并提供了肥沃的基础来研究组合统计和更普遍的数据科学中出现的信息理论和计算权衡。该专着调查了最近在SBM中建立社区检测的基本限制的最新发展,无论是在信息理论和计算方案方面,以及各种恢复要求,例如精确,部分和弱恢复。讨论的主要结果是在Chernoff-Hellinger阈值中进行精确恢复的相转换,Kesten-Stigum阈值弱恢复的相变,最佳的SNR - 单位信息折衷的部分恢复以及信息理论和信息理论之间的差距计算阈值。该专着给出了在寻求限制时开发的主要算法的原则推导,特别是通过绘制绘制,半定义编程,(线性化)信念传播,经典/非背带频谱和图形供电。还讨论了其他块模型的扩展,例如几何模型和一些开放问题。
translated by 谷歌翻译
The stochastic block model (SBM) is a random graph model with planted clusters. It is widely employed as a canonical model to study clustering and community detection, and provides generally a fertile ground to study the statistical and computational tradeoffs that arise in network and data sciences.This note surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational thresholds, and for various recovery requirements such as exact, partial and weak recovery (a.k.a., detection). The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the learning of the SBM parameters and the gap between information-theoretic and computational thresholds.The note also covers some of the algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, linearized belief propagation, classical and nonbacktracking spectral methods. A few open problems are also discussed.
translated by 谷歌翻译
本文展示了如何适应$ k $ -MEANS问题的几种简单和经典的基于采样的算法,以使用离群值设置。最近,Bhaskara等人。 (Neurips 2019)展示了如何将古典$ K $ -MEANS ++算法适应与异常值的设置。但是,他们的算法需要输出$ o(\ log(k)\ cdot z)$ outiers,其中$ z $是true Outliers的数量,以匹配$ o(\ log k)$ - 近似值的$ k的近似保证$ -Means ++。在本文中,我们以他们的想法为基础,并展示了如何适应几个顺序和分布式的$ k $ - 均值算法,但使用离群值来设置,但具有更强的理论保证:我们的算法输出$(1+ \ VAREPSILON)z $ OUTLIERS Z $ OUTLIERS在实现$ o(1 / \ varepsilon)$ - 近似目标函数的同时。在顺序世界中,我们通过改编Lattanzi和Sohler的最新算法来实现这一目标(ICML 2019)。在分布式设置中,我们适应了Guha等人的简单算法。 (IEEE Trans。知道和数据工程2003)以及Bahmani等人的流行$ K $ -Means $ \ | $。 (PVLDB 2012)。我们技术的理论应用是一种具有运行时间$ \ tilde {o}(nk^2/z)$的算法,假设$ k \ ll z \ ll n $。这与Omacle模型中此问题的$ \ Omega(NK^2/z)$的匹配下限相互补。
translated by 谷歌翻译
随着大型网络在重要领域的相关领域的相关性,例如对疾病传播的联系网络的研究,或社交网络对地缘政治的影响,已经有必要研究可扩展到非常大的网络的机器学习工具,通常包含数百万节点。一种主要类别可扩展算法称为网络表示学习或网络嵌入。这些算法尝试通过首次运行多个随机散步,然后使用观察到的随机步行段中的每对节点的共同数量来学习网络功能(例如〜节点)的表示,以获得一些节点的低维表示欧几里德空间。本文的目的是严格地了解两个主要算法,深途化和Node2VEC的性能,以恢复与地面真理社区的规范网络模型的社区。根据图的稀疏性,我们发现所需的随机步道段的长度,使得相应的观察到的共生窗口能够对底层社区分配的几乎精确恢复。我们证明,考虑到一些固定的共同发生窗口,使用随机散步的Node2Vec与低横向概率的随机散步可以相比,与使用简单随机散步的深度扫视相比,稀疏网络可以成功。此外,如果稀疏参数低,我们提供了证据表明这些算法几乎完全恢复可能不会成功。该分析需要开发用于对具有底层低级结构的随机网络计数的通用工具,这与独立兴趣。
translated by 谷歌翻译
在本文中,我们考虑了一个$ {\ rm u}(1)$ - 连接图,也就是说,每个方向的边缘都赋予了一个单位模量复杂的数字,该数字在方向翻转下简单地结合了。当时,组合laplacian的自然替代品是所谓的磁性拉普拉斯(Hermitian Matrix),其中包括有关图形连接的信息。连接图和磁性拉普拉斯人出现,例如在角度同步问题中。在较大且密集的图的背景下,我们在这里研究了磁性拉普拉斯的稀疏器,即基于边缘很少的子图的光谱近似值。我们的方法依赖于使用自定义的确定点过程对跨越森林(MTSF)进行取样,这是一种比偏爱多样性的边缘的分布。总而言之,MTSF是一个跨越子图,其连接的组件是树或周期根的树。后者部分捕获了连接图的角不一致,因此提供了一种压缩连接中包含的信息的方法。有趣的是,当此连接图具有弱不一致的周期时,可以通过使用循环弹出的随机行走来获得此分布的样本。我们为选择Laplacian的自然估计量提供了统计保证,并调查了我们的Sparsifier在两个应用中的实际应用。
translated by 谷歌翻译