Building trustworthy, effective, and responsible machine learning systems hinges on understanding how differences in training data and modeling decisions interact to impact predictive performance. In this work, we seek to better understand how we might characterize, detect, and design for data-model synergies. We focus on a particular type of data-model inefficiency, in which adding training data from some sources can actually lower performance evaluated on key sub-groups of the population, a phenomenon we refer to as negative data externalities on group performance. Such externalities can arise in standard learning settings and can manifest differently depending on conditions between training set size and model size. Data externalities directly imply a lower bound on feasible model improvements, yet improving models efficiently requires understanding the underlying data-model tensions. From a broader perspective, our results indicate that data-efficiency is a key component of both accurate and trustworthy machine learning.
translated by 谷歌翻译
这项研究研究了在美国国税局(IRS)为税收审计选择的系统中,算法公平性问题。尽管算法公平的领域主要围绕着像个人一样对待的概念发展,但我们却探索了垂直平等的概念 - 适当地考虑到个人之间的相关差异 - 这在许多公共政策环境中都是公平性的核心组成部分。应用于美国个人所得税体系的设计,垂直权益与不同收入水平的纳税人之间的税收和执法负担的公平分配有关。通过与财政部和国税局的独特合作,我们使用匿名个人纳税人微型数据,风险选择的审计以及2010 - 14年度的随机审计来研究税务管理的垂直平等。特别是,我们评估了现代机器学习方法选择审核的使用如何影响垂直权益。首先,我们展示了更灵活的机器学习(分类)方法(而不是简单的模型)如何将审计负担从高收入纳税人转移到中等收入纳税人。其次,我们表明,尽管现有的算法公平技术可以减轻跨收入的某些差异,但它们可能会造成巨大的绩效成本。第三,我们表明,是否将低报告的风险视为分类或回归问题的选择是高度的。从分类转变为回归模型,以预测不足的审计转变会大大向高收入个人转移,同时增加收入。最后,我们探讨了差异审计成本在塑造审计分配中的作用。我们表明,对回报的狭窄关注会破坏垂直权益。我们的结果对整个公共部门的算法工具的设计具有影响。
translated by 谷歌翻译
人们对算法偏见风险的认识越来越多,促进了围绕偏见缓解策略的努力。大多数提议的方法都属于两个类别之一:(1)对预测模型施加算法公平限制,以及(2)收集其他培训样本。最近以及在这两个类别的交集中,已经开发了在公平限制下提出主动学习的方法。但是,提出的缓解策略通常忽略了观察到的标签中呈现的偏差。在这项工作中,我们研究了在有标签偏见的情况下对主动数据收集策略的公平考虑。我们首先概述了在监督学习系统的背景下,不同类型的标签偏差。然后,我们从经验上表明,当忽略标签偏差时,收集更多数据会加剧偏见,并施加依赖数据收集过程中观察到的标签的公平约束可能无法解决问题。我们的结果说明了部署试图减轻单一类型偏见的模型的意外后果数据收集期间的偏差。
translated by 谷歌翻译
由于机器学习(ML)越来越影响人们和社会,因此还增加了对其潜在的不良后果的认识。为了预测,预防和减轻不良的下游后果,我们何时何地以及如何在整个ML生命周期中引入何时以及如何危害。在本文中,我们提供了一个框架,它在机器学习,跨越数据收集,开发和部署中识别七个不同的下游危害来源。在这样做时,我们的目标是促进周围这些问题的更高效和精确的沟通,以及更加直接的应用程序接地方式来减轻它们。
translated by 谷歌翻译
我们开发了一种新的原则性算法,用于估计培训数据点对深度学习模型的行为的贡献,例如它做出的特定预测。我们的算法估计了AME,该数量量衡量了将数据点添加到训练数据子集中的预期(平均)边际效应,并从给定的分布中采样。当从均匀分布中采样子集时,AME将还原为众所周知的Shapley值。我们的方法受因果推断和随机实验的启发:我们采样了训练数据的不同子集以训练多个子模型,并评估每个子模型的行为。然后,我们使用套索回归来基于子集组成共同估计每个数据点的AME。在稀疏假设($ k \ ll n $数据点具有较大的AME)下,我们的估计器仅需要$ O(k \ log n)$随机的子模型培训,从而改善了最佳先前的Shapley值估算器。
translated by 谷歌翻译
Learning curves provide insight into the dependence of a learner's generalization performance on the training set size. This important tool can be used for model selection, to predict the effect of more training data, and to reduce the computational complexity of model training and hyperparameter tuning. This review recounts the origins of the term, provides a formal definition of the learning curve, and briefly covers basics such as its estimation. Our main contribution is a comprehensive overview of the literature regarding the shape of learning curves. We discuss empirical and theoretical evidence that supports well-behaved curves that often have the shape of a power law or an exponential. We consider the learning curves of Gaussian processes, the complex shapes they can display, and the factors influencing them. We draw specific attention to examples of learning curves that are ill-behaved, showing worse learning performance with more training data. To wrap up, we point out various open problems that warrant deeper empirical and theoretical investigation. All in all, our review underscores that learning curves are surprisingly diverse and no universal model can be identified.
translated by 谷歌翻译
目的:我们研究使用机器学习(ML)模型的可解释的累入预测,并在预测能力,稀疏性和公平性方面分析性能。与以前的作品不同,本研究列举了输出概率而不是二进制预测的可解释模型,并使用定量公平定义来评估模型。本研究还研究了模型是否可以横跨地理位置概括。方法:我们在佛罗里达州和肯塔基州的两个不同的刑事核查数据集上生成了黑盒和可解释的ML模型。我们将这些模型的预测性能和公平与目前用于司法系统中使用的两种方法进行了比较,以预测审前常规率:Arnold PSA和Compas。我们评估了所有模型的预测性能,可以在两次跨越两次预测六种不同类型犯罪的模型。结果:几种可解释的ML模型可以预测常规和黑盒ML模型,比Compas或Arnold PSA更准确。这些模型在实践中可能有用。类似于Arnold PSA,这些可解释模型中的一些可以作为一个简单的表格写入。其他可以使用一组可视化显示。我们的地理分析表明ML模型应分开培训,以便单独的位置并随时间更新。我们还为可​​解释模型提供了公平分析。结论:可解释的机器学习模型可以在预测准确性和公平性方面表现,也可以表现,也可以表现,也可以执行不可解释的方法和目前使用的风险评估尺度。机器学习模型对于单独培训,可以更准确地进行不同的位置,并保持最新。
translated by 谷歌翻译
鉴于大型语言模型的广泛能力,应该有可能朝着一般的文本的助手工作,这些助手与人类价值一致,这意味着它是有帮助,诚实的和无害的。在此方向上的初始遗传,我们研究简单的基线技术和评估,例如提示。我们发现,从模型规模增加适度的干预措施的好处,概括为各种对准评估,并不会损害大型模型的性能。接下来,我们调查与对齐,比较仿制,二进制歧视和排名偏好建模相关的几个培训目标的缩放趋势。我们发现排名优先级模型比模仿学习更好地表现得多,并且通常以模型大小更有利地缩放。相比之下,二进制歧视通常与模仿学习非常类似地执行和缩放。最后,我们研究了一种“偏好模型预训练阶段的培训阶段,其目的是在对人偏好的芬明时提高样本效率。
translated by 谷歌翻译
深层神经网络(DNN)越来越多地用于软件工程和代码智能任务。这些是强大的工具,能够通过数百万参数从大型数据集中学习高度概括的模式。同时,它们的大容量可以使他们容易记住数据点。最近的工作表明,当训练数据集嘈杂,涉及许多模棱两可或可疑的样本时,记忆风险特别强烈表现出来,而记忆是唯一的追索权。本文的目的是评估和比较神经代码智能模型中的记忆和概括程度。它旨在提供有关记忆如何影响神经模型在代码智能系统中的学习行为的见解。为了观察模型中的记忆程度,我们为原始训练数据集增加了随机噪声,并使用各种指标来量化噪声对训练和测试各个方面的影响。我们根据Java,Python和Ruby Codebase评估了几种最先进的神经代码智能模型和基准。我们的结果突出了重要的风险:数百万可训练的参数允许神经网络记住任何包括嘈杂数据,并提供错误的概括感。我们观察到所有模型都表现出某些形式的记忆。在大多数代码智能任务中,这可能会很麻烦,因为它们依赖于相当容易发生噪声和重复性数据源,例如GitHub的代码。据我们所知,我们提供了第一个研究,以量化软件工程和代码智能系统领域的记忆效应。这项工作提高了人们的意识,并为训练神经模型的重要问题提供了新的见解,这些问题通常被软件工程研究人员忽略。
translated by 谷歌翻译
随着机器学习在整个社会中变得越来越普遍,必须仔细考虑包括数据隐私和公平性在内的各个方面,对于高度监管的行业的部署至关重要。不幸的是,增强隐私技术的应用可能会使模型中的不公平趋势恶化。尤其是用于私人模型训练,私人随机梯度下降(DPSGD)的最广泛使用的技术之一,通常会加剧对数据中的组的不同影响。在这项工作中,我们研究了DPSGD中不公平性的细粒度原因,并确定由于不公平的梯度剪辑而导致的梯度未对准是最重要的来源。该观察结果使我们采取了一种新的方法,可以通过防止DPSGD中的梯度未对准来减少不公平。
translated by 谷歌翻译
商业和政府部门中自动面部识别的扩散引起了个人的严重隐私问题。解决这些隐私问题的一种方法是采用逃避攻击针对启动面部识别系统的度量嵌入网络的攻击:面部混淆系统会产生不透彻的扰动图像,从而导致面部识别系统误解用户。受扰动的面孔是在公制嵌入网络上产生的,在面部识别的背景下,这是不公平的。人口公平的问题自然而然:面部混淆系统表现是否存在人口统计学差异?我们通过对最近的面部混淆系统的分析和经验探索来回答这个问题。指标嵌入网络在人口统计学上很有意识:面部嵌入由人口统计组群聚集。我们展示了这种聚类行为如何导致少数群体面孔的面部混淆实用性减少。直观的分析模型可以深入了解这些现象。
translated by 谷歌翻译
现在通常用于高风险设置,如医疗诊断,如医疗诊断,那么需要不确定量化,以避免后续模型失败。无分发的不确定性量化(无分布UQ)是用户友好的范式,用于为这种预测创建统计上严格的置信区间/集合。批判性地,间隔/集合有效而不进行分布假设或模型假设,即使具有最多许多DataPoints也具有显式保证。此外,它们适应输入的难度;当输入示例很困难时,不确定性间隔/集很大,信号传达模型可能是错误的。在没有多大的工作和没有再培训的情况下,可以在任何潜在的算法(例如神经网络)上使用无分​​发方法,以产生置信度集,以便包含用户指定概率,例如90%。实际上,这些方法易于理解和一般,应用于计算机视觉,自然语言处理,深度加强学习等领域出现的许多现代预测问题。这种实践介绍是针对对无需统计学家的免费UQ的实际实施感兴趣的读者。我们通过实际的理论和无分发UQ的应用领导读者,从保形预测开始,并使无关的任何风险的分布控制,如虚假发现率,假阳性分布检测,等等。我们将包括Python中的许多解释性插图,示例和代码样本,具有Pytorch语法。目标是提供读者对无分配UQ的工作理解,使它们能够将置信间隔放在算法上,其中包含一个自包含的文档。
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
半监督学习(SSL)证明了其在高质量监督数据受到严重限制时提高各种学习任务的模型准确性的潜力。尽管经常确定,整个数据群的平均准确性得到了改善,但尚不清楚SSL如何具有不同的子人群的票价。当我们旨在公平对待的人口群体定义不同的子人群时,了解上述问题具有很大的公平意义。在本文中,我们揭示了部署SSL的不同影响:在不使用SSL(“ Rich” One)的情况下具有较高基线准确性的子人群倾向于从SSL中受益更多;尽管添加SSL模块后,遭受低基线准确性(“穷”)的子人群甚至可能会观察到性能下降。我们从理论上和经验上为广泛的SSL算法建立上述观察结果,该算法是明确或隐式使用辅助“伪标签”。一组图像和文本分类任务的实验证实了我们的主张。我们介绍了一个新的度量,收益比,并促进对SSL公平性(均等福利比)的评估。我们进一步讨论如何减轻不同的影响。我们希望我们的论文能够震惊使用SSL的潜在陷阱,并鼓励对未来SSL算法进行多方面评估。
translated by 谷歌翻译
当可能的许多标签是可能的时,选择单个可以导致低精度。一个常见的替代方案,称为顶级k $分类,是选择一些数字$ k $(通常约5),并返回最高分数的$ k $标签。不幸的是,对于明确的案例,$ k> 1 $太多,对于非常暧昧的情况,$ k \ leq 5 $(例如)太小。另一种明智的策略是使用一种自适应方法,其中返回的标签数量随着计算的歧义而变化,但必须平均到所有样本的某些特定的$ k $。我们表示这种替代方案 - $ k $分类。本文在平均值的含量较低的误差率时,本文正式地表征了模糊性曲线,比固定的顶级k $分类更低。此外,它为固定尺寸和自适应分类器提供了自然估计程序,并证明了它们的一致性。最后,它报告了实际图像数据集的实验,揭示了平均值的效益 - 在实践中的价格超过高度k $分类。总的来说,当含糊不清的歧义时,平均值-$ k $永远不会比Top-$ K $更差,并且在我们的实验中,当估计时,这也持有。
translated by 谷歌翻译
我们查看模型可解释性的特定方面:模型通常需要限制在大小上才能被认为是可解释的,例如,深度5的决策树比深度50中的一个更容易解释。但是,较小的模型也倾向于高偏见。这表明可解释性和准确性之间的权衡。我们提出了一种模型不可知论技术,以最大程度地减少这种权衡。我们的策略是首先学习甲骨文,这是培训数据上高度准确的概率模型。 Oracle预测的不确定性用于学习培训数据的抽样分布。然后,对使用此分布获得的数据样本进行了可解释的模型,通常会导致精确度明显更高。我们将抽样策略作为优化问题。我们的解决方案1具有以下关键的有利属性:(1)它使用固定数量的七个优化变量,而与数据的维度(2)无关,它是模型不可知的 - 因为可解释的模型和甲骨文都可能属于任意性模型家族(3)它具有模型大小的灵活概念,并且可以容纳向量大小(4)它是一个框架,使其能够从优化领域的进度中受益。我们还提出了以下有趣的观察结果:(a)通常,小型模型大小的最佳训练分布与测试分布不同; (b)即使可解释的模型和甲骨文来自高度截然不同的模型家族,也存在这种效果:我们通过使用封闭的复发单位网络作为甲骨文来提高决策树的序列分类精度,从而在文本分类任务上显示此效果。使用字符n-grams; (c)对于模型,我们的技术可用于确定给定样本量的最佳训练样本。
translated by 谷歌翻译
Web爬行的数据集已在最近的图像文本模型(例如剪辑(对比语言图像预训练)或火烈鸟)中启用了非凡的概括功能,但是对数据集创建过程知之甚少。在这项工作中,我们介绍了六个可公开可用数据源的测试床 - YFCC,LAION,概念标题,机智,redcaps,shutterstock-,以调查预训练分布如何在剪辑中诱导稳健性。我们发现,预训练数据的性能在分布变化之间有很大的变化,没有单个数据源主导。此外,我们系统地研究了这些数据源之间的相互作用,发现组合多个来源并不一定会产生更好的模型,而是稀释了最佳个体数据源的鲁棒性。我们将经验发现与简单环境中的理论见解相辅相成,其中结合训练数据还会导致稳健性稀释。此外,我们的理论模型为LAION数据集中最近采用的基于夹的数据过滤技术的成功提供了候选解释。总体而言,我们的结果表明,仅仅从Web中收集大量数据并不是建立预训练数据集以进行鲁棒性概括的最有效方法,因此需要进一步研究数据集设计。
translated by 谷歌翻译
Learning models that gracefully handle distribution shifts is central to research on domain generalization, robust optimization, and fairness. A promising formulation is domain-invariant learning, which identifies the key issue of learning which features are domain-specific versus domaininvariant. An important assumption in this area is that the training examples are partitioned into "domains" or "environments". Our focus is on the more common setting where such partitions are not provided. We propose EIIL, a general framework for domain-invariant learning that incorporates Environment Inference to directly infer partitions that are maximally informative for downstream Invariant Learning. We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels, and significantly outperforms ERM on worst-group performance in the Waterbirds and CivilComments datasets. Finally, we establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
translated by 谷歌翻译
有针对性的训练集攻击将恶意实例注入训练集中,以导致训练有素的模型错误地标记一个或多个特定的测试实例。这项工作提出了目标识别的任务,该任务决定了特定的测试实例是否是训练集攻击的目标。目标识别可以与对抗性识别相结合,以查找(并删除)攻击实例,从而减轻对其他预测的影响,从而减轻攻击。我们没有专注于单个攻击方法或数据模式,而是基于影响力估计,这量化了每个培训实例对模型预测的贡献。我们表明,现有的影响估计量的不良实际表现通常来自于他们对训练实例和迭代次数的过度依赖。我们重新归一化的影响估计器解决了这一弱点。他们的表现远远超过了原始估计量,可以在对抗和非对抗环境中识别有影响力的训练示例群体,甚至发现多达100%的对抗训练实例,没有清洁数据误报。然后,目标识别简化以检测具有异常影响值的测试实例。我们证明了我们的方法对各种数据域的后门和中毒攻击的有效性,包括文本,视觉和语音,以及针对灰色盒子的自适应攻击者,该攻击者专门优化了逃避我们方法的对抗性实例。我们的源代码可在https://github.com/zaydh/target_indistification中找到。
translated by 谷歌翻译
Distributional shift is one of the major obstacles when transferring machine learning prediction systems from the lab to the real world. To tackle this problem, we assume that variation across training domains is representative of the variation we might encounter at test time, but also that shifts at test time may be more extreme in magnitude. In particular, we show that reducing differences in risk across training domains can reduce a model's sensitivity to a wide range of extreme distributional shifts, including the challenging setting where the input contains both causal and anticausal elements. We motivate this approach, Risk Extrapolation (REx), as a form of robust optimization over a perturbation set of extrapolated domains (MM-REx), and propose a penalty on the variance of training risks (V-REx) as a simpler variant. We prove that variants of REx can recover the causal mechanisms of the targets, while also providing some robustness to changes in the input distribution ("covariate shift"). By tradingoff robustness to causally induced distributional shifts and covariate shift, REx is able to outperform alternative methods such as Invariant Risk Minimization in situations where these types of shift co-occur.
translated by 谷歌翻译