高等教育机构年度排名(HEIS)是一种全球性现象,对高等教育景观产生重大影响。大多数赫斯密切关注排名结果,并期待提高他们的行列。但是,保持良好的等级和在排名中的上升是一项艰巨的任务,因为它需要相当大的资源,努力和性能改进计划。在这项工作中,首先,我们展示了利用相关性热手套的探索性数据分析(EDA),盒子图可以帮助理解排名数据的广泛趋势。随后,我们介绍了使用基于决策树(DT)的算法对排名数据进行分类的新颖思想,并使用数据可视化技术检索级别改进的决策路径。使用LAPLACE校正到概率估计,我们量化了从可解释的DT模型获得的不同决策路径附带的确定性。拟议的方法可以援助大学和希斯定量评估改进的范围,拟定了一个细粒度的长期行动计划,并准备了合适的路线图。
translated by 谷歌翻译
装袋和升压是在机器学习(ml)中的两个流行的集合方法,产生许多单独的决策树。由于这些方法的固有组合特性,它们通常以预测性能更优于单决定树或其他ML模型。然而,为每个决策树生成许多决定路径,增加了模型的整体复杂性,并阻碍了其在需要值得信赖和可解释的决策的域中的域,例如金融,社会护理和保健。因此,随着决策的数量升高,袋装和升降算法(例如随机森林和自适应升压)的解释性降低。在本文中,我们提出了一种视觉分析工具,该工具旨在帮助用户通过彻底的视觉检查工作流程从这种ML模型中提取决策,包括选择一套鲁棒和不同的模型(源自不同的集合学习算法),选择重要的功能根据他们的全球贡献,决定哪些决定对于全球解释(或本地,具体案件)是必不可少的。结果是基于多个模型的协议和用户出口的探索手动决策的最终决定。最后,我们通过用例,使用场景和用户学习评估患者的适用性和有效性。
translated by 谷歌翻译
本文调查了股票回购,特别是分享回购公告。它解决了如何识别此类公告,股票回购的超额回报以及股票回购公告后的回报的预测。我们说明了两种NLP方法,用于自动检测股票回购公告。即使有少量的培训数据,我们也可以达到高达90%的准确性。该论文利用这些NLP方法生成一个由57,155个股票回购公告组成的大数据集。通过分析该数据集,本论文的目的是表明大多数宣布回购的公司的大多数公司都表现不佳。但是,少数公司的表现极大地超过了MSCI世界。当查看所有公司的平均值时,这种重要的表现过高会导致净收益。如果根据公司的规模调整了基准指数,则平均表现过高,并且大多数表现不佳。但是,发现宣布股票回购的公司至少占其市值的1%,即使使用调整后的基准,也平均交付了显着的表现。还发现,在危机时期宣布股票回购的公司比整个市场更好。此外,生成的数据集用于训练72个机器学习模型。通过此,它能够找到许多可以达到高达77%并产生大量超额回报的策略。可以在六个不同的时间范围内改善各种性能指标,并确定明显的表现。这是通过训练多个模型的不同任务和时间范围以及结合这些不同模型的方法来实现的,从而通过融合弱学习者来产生重大改进,以创造一个强大的学习者。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
随着优化软件的显着改进,几十年前似乎棘手的大规模问题的解决方案现在已成为日常任务。这将更多的现实应用程序纳入了优化器的范围。同时,解决优化问题通常是将解决方案付诸实践时较小的困难之一。一个主要的障碍是,可以将优化软件视为黑匣子,它可能会产生高质量的解决方案,但是当情况发生变化时,可以创建完全不同的解决方案,从而导致对优化解决方案的接受率低。这种可解释性和解释性的问题在其他领域(例如机器学习)引起了极大的关注,但在优化方面却不那么关注。在本文中,我们提出了一个优化框架,以得出本质上具有易于理解的解释性规则的解决方案,在哪些情况下应选择解决方案。我们专注于代表解释性规则的决策树,我们提出了整数编程公式以及一种启发式方法,以确保我们的方法即使在大规模问题上也适用。使用随机和现实世界数据的计算实验表明,固有的可解释性成本可能很小。
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
决策树集合中汇总分类估计的一种常见方法是使用投票或平均每个类别的概率。后者考虑了不确定性估计值的可靠性(可以说,“不确定性的不确定性”)。更普遍的是,如何最好地结合来自多个来源的概率估计值,这是未知的。在本文中,我们研究了许多替代预测方法。我们的方法受到概率,信念功能和可靠分类的理论的启发,以及我们称证据积累的原则。我们对各种数据集的实验是基于随机决策树,该决策树保证了要组合的预测中的高度多样性。出乎意料的是,我们发现将平均值超过概率实际上很难击败。但是,证据积累在除小叶子以外的所有叶子上都表现出更好的结果。
translated by 谷歌翻译
Building an accurate model of travel behaviour based on individuals' characteristics and built environment attributes is of importance for policy-making and transportation planning. Recent experiments with big data and Machine Learning (ML) algorithms toward a better travel behaviour analysis have mainly overlooked socially disadvantaged groups. Accordingly, in this study, we explore the travel behaviour responses of low-income individuals to transit investments in the Greater Toronto and Hamilton Area, Canada, using statistical and ML models. We first investigate how the model choice affects the prediction of transit use by the low-income group. This step includes comparing the predictive performance of traditional and ML algorithms and then evaluating a transit investment policy by contrasting the predicted activities and the spatial distribution of transit trips generated by vulnerable households after improving accessibility. We also empirically investigate the proposed transit investment by each algorithm and compare it with the city of Brampton's future transportation plan. While, unsurprisingly, the ML algorithms outperform classical models, there are still doubts about using them due to interpretability concerns. Hence, we adopt recent local and global model-agnostic interpretation tools to interpret how the model arrives at its predictions. Our findings reveal the great potential of ML algorithms for enhanced travel behaviour predictions for low-income strata without considerably sacrificing interpretability.
translated by 谷歌翻译
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
translated by 谷歌翻译
机器学习(ML)生命周期涉及一系列迭代步骤,从有效的收集和准备数据,包括复杂的特征工程流程,对结果的演示和改进,各种步骤中的各种算法选择。特征工程尤其可以对ML非常有益,导致许多改进,例如提高预测结果,降低计算时间,减少过度噪音,并提高培训期间所采取的决策背后的透明度。尽管如此,虽然存在多个视觉分析工具来监控和控制ML生命周期的不同阶段(特别是与数据和算法相关的阶段),但功能工程支持仍然不足。在本文中,我们提出了FightEnvi,一种专门设计用于协助特征工程过程的视觉分析系统。我们建议的系统可帮助用户选择最重要的功能,将原始功能转换为强大的替代方案,并进行不同的特征生成组合。此外,数据空间切片允许用户探索本地和全局尺度上的功能的影响。 Feationenvi利用多种自动特征选择技术;此外,它目视指导用户有统计证据的关于每个特征的影响(或功能的子集)。最终结果是通过多种验证度量评估的重新设计的重新设计特征。用两种用例和案例研究证明了FeatureenVI的有用性和适用性。我们还向评估我们系统的有效性以及评估我们系统的有效性的观众报告反馈。
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译
Covid-19是由新型冠状病毒(SARS-COV-2)引起的疾病,于2019年12月下旬首次在中国武汉出现。不久之后,该病毒在全球范围内传播,并于3月被世界卫生组织宣布为大流行病。 2020年。这造成了世界各地和美国的许多变化,包括向在线学习的教育转变。在本文中,我们试图了解Covid-19-19的大流行和在线学习的增加如何影响大学生的情感福祉。我们使用几种机器学习和统计模型来分析卢布尔雅那大学公共行政学院,斯洛文尼亚大学,与国际大学,其他高等教育机构和学生协会一起收集的数据。我们的结果表明,与学生的学术生活有关的特征对他们的情感健康产生了最大的影响。其他重要因素包括学生对大学和政府对大流行的处理以及学生的财务安全的满意。
translated by 谷歌翻译
在这项研究中,我们研究了一组从484名在美国中部地区大西洋地区一所大型公立大学招收的学生收集的主要数据。数据称为纽带数据,包括学生的人口统计和支持网络信息。支持网络数据由强调支持类型的信息(即情感或教育;常规或激烈)。使用此数据集,使用卡方自动互动检测(CHAID),决策树算法和CFOREST(一种随机的森林算法)创建了用于预测学生自我报告的GPA的学术成就的模型,该模型是使用条件推理的Cforest创建的树。我们比较方法的精度和变化在每种算法建议的一组重要变量集中。每种算法都发现,不同的变量对于不同的学生人口统计学很重要。对于白人学生来说,不同类型的教育支持对于预测学术成就很重要,而对于非白人学生来说,不同类型的情感支持对于预测学术成就很重要。不同类型的常规支持的存在对于预测顺格西格妇女的学术成就很重要,而不同类型的强烈支持对于预测cisgender男性的学术成就很重要。
translated by 谷歌翻译
无法假定数据驱动AI模型的结果总是正确的。为了估算这些结果中的不确定性,已经提出了不确定性包装框架,其考虑了与模型适合,输入质量和范围合规相关的不确定性。不确定性包装器使用决策树方法来群集输入质量相关的不确定性,严格分配输入到不同的不确定性集群。因此,仅一个特征的略有变化可能导致群集分配,具有显着不同的不确定性。我们的目标是用一种方法取代这一点,这种方法可以在保留解释性,运行时复杂度和预测性能的同时减轻这些作业的硬决策界限。选择五种方法作为候选人并集成到不确定性包装框架中。对于基于Brier评分的评估,使用Carla Simulator和Yolov3生成用于行人检测用例的数据集。所有综合方法都达到了不确定估计的软化,即平滑。然而,与决策树相比,它们并不是那么容易解释并具有更高的运行时复杂性。此外,雷恩分数的一些组成部分损害,而其他部分则改善。关于Brier得分的最有前途是随机森林。总之,软化硬决策树边界似乎是一个权衡决定。
translated by 谷歌翻译
我们查看模型可解释性的特定方面:模型通常需要限制在大小上才能被认为是可解释的,例如,深度5的决策树比深度50中的一个更容易解释。但是,较小的模型也倾向于高偏见。这表明可解释性和准确性之间的权衡。我们提出了一种模型不可知论技术,以最大程度地减少这种权衡。我们的策略是首先学习甲骨文,这是培训数据上高度准确的概率模型。 Oracle预测的不确定性用于学习培训数据的抽样分布。然后,对使用此分布获得的数据样本进行了可解释的模型,通常会导致精确度明显更高。我们将抽样策略作为优化问题。我们的解决方案1具有以下关键的有利属性:(1)它使用固定数量的七个优化变量,而与数据的维度(2)无关,它是模型不可知的 - 因为可解释的模型和甲骨文都可能属于任意性模型家族(3)它具有模型大小的灵活概念,并且可以容纳向量大小(4)它是一个框架,使其能够从优化领域的进度中受益。我们还提出了以下有趣的观察结果:(a)通常,小型模型大小的最佳训练分布与测试分布不同; (b)即使可解释的模型和甲骨文来自高度截然不同的模型家族,也存在这种效果:我们通过使用封闭的复发单位网络作为甲骨文来提高决策树的序列分类精度,从而在文本分类任务上显示此效果。使用字符n-grams; (c)对于模型,我们的技术可用于确定给定样本量的最佳训练样本。
translated by 谷歌翻译
分类链是一种用于在多标签分类中建模标签依赖性的有效技术。但是,该方法需要标签的固定静态顺序。虽然理论上,任何顺序都足够了,实际上,该订单对最终预测的质量具有大量影响。动态分类链表示每个实例对分类的想法,可以动态选择预测标签的顺序。这种方法的天真实现的复杂性是禁止的,因为它需要训练一系列分类器,以满足标签的每种可能置换。为了有效地解决这个问题,我们提出了一种基于随机决策树的新方法,该方法可以动态地选择每个预测的标签排序。我们凭经验展示了下一个标签的动态选择,通过在否则不变的随机决策树模型下使用静态排序。 %和实验环境。此外,我们还展示了基于极端梯度提升树的替代方法,其允许更具目标的动态分级链训练。我们的结果表明,该变体优于随机决策树和其他基于树的多标签分类方法。更重要的是,动态选择策略允许大大加速培训和预测。
translated by 谷歌翻译
流媒体数据中对异常的实时检测正在受到越来越多的关注,因为它使我们能够提高警报,预测故障并检测到整个行业的入侵或威胁。然而,很少有人注意比较流媒体数据(即在线算法)的异常检测器的有效性和效率。在本文中,我们介绍了来自不同算法家族(即基于距离,密度,树木或投影)的主要在线检测器的定性合成概述,并突出了其构建,更新和测试检测模型的主要思想。然后,我们对在线检测算法的定量实验评估以及其离线对应物进行了彻底的分析。检测器的行为与不同数据集(即元功能)的特征相关,从而提供了对其性能的元级分析。我们的研究介绍了文献中几个缺失的见解,例如(a)检测器对随机分类器的可靠性以及什么数据集特性使它们随机执行; (b)在线探测器在何种程度上近似离线同行的性能; (c)哪种绘制检测器的策略和更新原始图最适合检测仅在数据集的功能子空间中可见的异常; (d)属于不同算法家族的探测器的有效性与效率之间的权衡是什么; (e)数据集的哪些特定特征产生在线算法以胜过所有其他特征。
translated by 谷歌翻译
在本文中,我们介绍了一种基于数学的数学优化的方法来构建多种单件实例的树形分类规则。我们的方法包括构建分类树,除了叶节点之外,暂时遗漏标签并通过SVM分离超平面分为两个类。我们提供了一个混合整数非线性编程配方,用于问题,并报告电池的扩展电池的结果,以评估我们关于其他基准分类方法的提案的性能。
translated by 谷歌翻译
拖延是任务的非理性延迟,是在线学习中的普遍情况。潜在的负面后果包括更高的辍学风险,增加压力和情绪减少。由于学习管理系统和学习分析的增加,可以检测到这种行为的指标,从而预测未来的拖延和其他扩张行为。但是,关注此类预测的研究很少。此外,几乎不存在涉及不同类型的预测指标和预测性能之间的比较的研究。在这项研究中,我们旨在通过分析多个机器学习算法的性能来填补这些研究空白,以预测具有两类预测指标的高等教育环境中在线作业的延迟或及时提交:基于主观的,基于问卷的变量和目标,客观,客观,客观,目标,客观,客观,客观,客观,从学习管理系统中提取的基于日志数据的指标。结果表明,具有客观预测变量的模型始终优于主观预测指标的模型,并且两种变量类型的组合表现稍好一些。对于这三个选项中的每一个,一种不同的方法盛行(主观,贝叶斯多层次模型的梯度增强机器,共同预测指标的随机森林)。我们得出的结论是,在学习管理系统中实施此类模型之前,应仔细注意预测变量和算法。
translated by 谷歌翻译
我们介绍了强大的子组发现的问题,即,找到一个关于一个或多个目标属性的脱颖而出的子集的一组可解释的描述,2)是统计上的鲁棒,并且3)非冗余。许多尝试已经挖掘了局部强壮的子组或解决模式爆炸,但我们是第一个从全球建模角度同时解决这两个挑战的爆炸。首先,我们制定广泛的模型类别的子组列表,即订购的子组,可以组成的单次组和多变量目标,该目标可以由标称或数字变量组成,并且包括其定义中的传统Top-1子组发现。这种新颖的模型类允许我们使用最小描述长度(MDL)原理来形式地形化最佳强大的子组发现,在那里我们分别为标称和数字目标的最佳归一化最大可能性和贝叶斯编码而度假。其次,正如查找最佳子组列表都是NP-Hard,我们提出了SSD ++,一个贪婪的启发式,找到了很好的子组列表,并保证了根据MDL标准的最重要的子组在每次迭代中添加,这被显示为等同于贝叶斯一个样本比例,多项式或子组之间的多项式或T检验,以及数据集边际目标分布以及多假设检测罚款。我们经验上显示了54个数据集,即SSD ++优于先前的子组设置发现方法和子组列表大小。
translated by 谷歌翻译