稀疏贝叶斯学习(SBL)构建了一个极其稀疏的概率模型,具有非常竞争力的泛化。但是,SBL需要将大型协方差矩阵与复杂性O(m ^ 3)(m:特征大小)反转,以更新正则化引脚,使得难以进行实际使用。 SBL中有三个问题:1)反转协方差矩阵可能在某些情况下获得奇异溶液,从而从收敛中阻碍SBL; 2)对高维特征空间或大数据尺寸的问题的可扩展性差; 3)SBL容易受到大规模数据的内存溢出。本文通过新提出的对角QuAsi-Newton(DQN)方法来解决DQN-SBL的新提出的对准Quasi-Newton(DQN)方法,其中忽略了大协方差矩阵的反转,使得复杂性和存储器存储减少到O(M)。使用不同大小的各种基准数据集,在非线性分类器和线性特征选择上进行彻底评估DQN-SBL。实验结果验证DQN-SBL是否通过非常稀疏的模型接收竞争泛化,并符合大规模问题。
translated by 谷歌翻译
内核逻辑回归(KLR)是机器学习中常规的非线性分类器。随着数据大小的爆炸性增长,大型核矩阵的存储和计算是扩展KLR的主要挑战。即使是nyStr \” {o} m近似也用于求解KLR,它还面临$ O(nc^2)$的时间复杂性和$ O(NC)$的空间复杂性,其中$ n是$ n $的数字培训实例和$ c $是抽样大小。在本文中,我们提出了一种快速的牛顿方法,通过利用存储和计算优势,有效地解决了大规模KLR问题,多级循环矩阵(MCM)。带有MCM的矩阵,存储空间减少到$ O(n)$,并进一步近似于牛顿方程的系数矩阵作为MCM,牛顿迭代的计算复杂性降低到$ O(n \ log n \ log n)$。所提出的方法可以在迭代中以对数线性的时间复杂性运行,因为可以实现MCM(或其逆)和向量的乘法多维快速傅立叶变换(MFFT)。 - 分类问题表明,提出的方法启用了S KLR可以扩展到大规模的问题,而不必牺牲测试准确性的情况下,记忆消耗较少,较少的训练时间。
translated by 谷歌翻译
深度学习在广泛的AI应用方面取得了有希望的结果。较大的数据集和模型一致地产生更好的性能。但是,我们一般花费更长的培训时间,以更多的计算和沟通。在本调查中,我们的目标是在模型精度和模型效率方面提供关于大规模深度学习优化的清晰草图。我们调查最常用于优化的算法,详细阐述了大批量培训中出现的泛化差距的可辩论主题,并审查了解决通信开销并减少内存足迹的SOTA策略。
translated by 谷歌翻译
我们研究了估计多元高斯分布中的精度矩阵的问题,其中所有部分相关性都是非负面的,也称为多变量完全阳性的顺序阳性($ \ mathrm {mtp} _2 $)。近年来,这种模型得到了重大关注,主要是由于有趣的性质,例如,无论底层尺寸如何,最大似然估计值都存在于两个观察。我们将此问题作为加权$ \ ell_1 $ -norm正常化高斯的最大似然估计下$ \ mathrm {mtp} _2 $约束。在此方向上,我们提出了一种新颖的预计牛顿样算法,该算法包含精心设计的近似牛顿方向,这导致我们具有与一阶方法相同的计算和内存成本的算法。我们证明提出的预计牛顿样算法会聚到问题的最小值。从理论和实验中,我们进一步展示了我们使用加权$ \ ell_1 $ -norm的制剂的最小化器能够正确地恢复基础精密矩阵的支持,而无需在$ \ ell_1 $ -norm中存在不连贯状态方法。涉及合成和实世界数据的实验表明,我们所提出的算法从计算时间透视比最先进的方法显着更有效。最后,我们在金融时序数据中应用我们的方法,这些数据对于显示积极依赖性,在那里我们在学习金融网络上的模块间值方面观察到显着性能。
translated by 谷歌翻译
In the era of big data, it is desired to develop efficient machine learning algorithms to tackle massive data challenges such as storage bottleneck, algorithmic scalability, and interpretability. In this paper, we develop a novel efficient classification algorithm, called fast polynomial kernel classification (FPC), to conquer the scalability and storage challenges. Our main tools are a suitable selected feature mapping based on polynomial kernels and an alternating direction method of multipliers (ADMM) algorithm for a related non-smooth convex optimization problem. Fast learning rates as well as feasibility verifications including the efficiency of an ADMM solver with convergence guarantees and the selection of center points are established to justify theoretical behaviors of FPC. Our theoretical assertions are verified by a series of simulations and real data applications. Numerical results demonstrate that FPC significantly reduces the computational burden and storage memory of existing learning schemes such as support vector machines, Nystr\"{o}m and random feature methods, without sacrificing their generalization abilities much.
translated by 谷歌翻译
贝叶斯拉索是在线性回归框架中构建的,并应用了吉布斯采样以估计回归参数。本文开发了一种新的稀疏学习模型,称为贝叶斯套索稀疏(BLS)模型,该模型采用了贝叶斯拉索的层次模型公式。与原始贝叶斯套索的主要区别在于估计程序;BLS方法使用基于II类型最大似然过程的学习算法。与贝叶斯拉索相反,BLS提供了回归参数的稀疏估计值。BLS方法还通过引入内核功能来得出非线性监督学习问题。我们将BLS模型与众所周知的相关矢量机,快速拉普拉斯法,再见套索和套索在模拟和真实数据上进行了比较。数值结果表明,BLS稀疏而精确,尤其是在处理嘈杂和不规则数据集时。
translated by 谷歌翻译
We develop an optimization algorithm suitable for Bayesian learning in complex models. Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations. It applies within the class of exponential-family variational posterior distributions, for which we extensively discuss the Gaussian case for which the updates have a rather simple form. Our Quasi Black-box Variational Inference (QBVI) framework is readily applicable to a wide class of Bayesian inference problems and is of simple implementation as the updates of the variational posterior do not involve gradients with respect to the model parameters, nor the prescription of the Fisher information matrix. We develop QBVI under different hypotheses for the posterior covariance matrix, discuss details about its robust and feasible implementation, and provide a number of real-world applications to demonstrate its effectiveness.
translated by 谷歌翻译
我们制定自然梯度变推理(VI),期望传播(EP),和后线性化(PL)作为牛顿法用于优化贝叶斯后验分布的参数扩展。这种观点明确地把数值优化框架下的推理算法。我们表明,通用近似牛顿法从优化文献,即高斯 - 牛顿和准牛顿方法(例如,该BFGS算法),仍然是这种“贝叶斯牛顿”框架下有效。这导致了一套这些都保证以产生半正定协方差矩阵,不像标准VI和EP新颖算法。我们统一的观点提供了新的见解各种推理方案之间的连接。所有提出的方法适用于具有高斯事先和非共轭的可能性,这是我们与(疏)高斯过程和状态空间模型展示任何模型。
translated by 谷歌翻译
Deep Learning optimization involves minimizing a high-dimensional loss function in the weight space which is often perceived as difficult due to its inherent difficulties such as saddle points, local minima, ill-conditioning of the Hessian and limited compute resources. In this paper, we provide a comprehensive review of 12 standard optimization methods successfully used in deep learning research and a theoretical assessment of the difficulties in numerical optimization from the optimization literature.
translated by 谷歌翻译
具有伽马超高提升的分层模型提供了一个灵活,稀疏的促销框架,用于桥接$ l ^ 1 $和$ l ^ 2 $ scalalizations在贝叶斯的配方中致正问题。尽管对这些模型具有贝叶斯动机,但现有的方法仅限于\ Textit {最大后验}估计。尚未实现执行不确定性量化的可能性。本文介绍了伽马超高图的分层逆问题的变分迭代交替方案。所提出的变分推理方法产生精确的重建,提供有意义的不确定性量化,易于实施。此外,它自然地引入了用于选择超参数的模型选择。我们说明了我们在几个计算的示例中的方法的性能,包括从时间序列数据的动态系统的解卷积问题和稀疏识别。
translated by 谷歌翻译
多变量分析(MVA)包括用于特征提取的众所周知的方法,该方法提取,其利用表示数据的输入变量之间的相关性。大多数此类方法享有的一个重要属性是提取特征之间的不相关性。最近,MVA方法的正则化版本在文献中出现,主要是为了获得解决方案的解释性。在这些情况下,不再以封闭的方式获得解决方案,并且经常使用更复杂的优化方法,依赖于两个步骤的迭代。本文回到了替代方法来解决这个迭代问题。这种方法的主要新颖性在于保持原始方法的几个属性,最值得注意的是提取特征的不相关性。在此框架下,我们提出了一种新的方法,该方法利用L-21规范在特征提取过程中执行变量选择。不同问题的实验结果证实了与现有化配方的拟议配方的优点。
translated by 谷歌翻译
最近的研究利用稀疏的分类来预测高维大脑活动信号的分类变量,以暴露人类的意图和精神状态,从而自动选择模型训练过程中的相关特征。但是,现有的稀疏分类模型可能会容易出现由大脑记录固有的噪声引起的性能降解。为了解决这个问题,我们旨在在本研究中提出一种新的健壮和稀疏分类算法。为此,我们将CorrentRopy学习框架引入基于自动相关性的稀疏分类模型,并提出了一种新的基于Correntropy的鲁棒稀疏逻辑回归算法。为了证明所提出算法的上等大脑活性解码性能,我们在合成数据集,脑电图(EEG)数据集和功能磁共振成像(FMRI)数据集上对其进行了评估。广泛的实验结果证实,不仅提出的方法可以在嘈杂和高维分类任务中实现更高的分类精度,而且还将为解码方案选择那些更有信息的功能。将Correntropy学习方法与自动相关性测定技术相结合,将显着提高噪声的鲁棒性,从而导致更足够的稳健稀疏脑解码算法。它在现实世界中的大脑活动解码和脑部计算机界面中提供了一种更强大的方法。
translated by 谷歌翻译
我们开发了一个计算程序,以估计具有附加噪声的半摩托车高斯过程回归模型的协方差超参数。也就是说,提出的方法可用于有效估计相关误差的方差,以及基于最大化边际似然函数的噪声方差。我们的方法涉及适当地降低超参数空间的维度,以简化单变量的根发现问题的估计过程。此外,我们得出了边际似然函数及其衍生物的边界和渐近线,这对于缩小高参数搜索的初始范围很有用。使用数值示例,我们证明了与传统参数优化相比,提出方法的计算优势和鲁棒性。
translated by 谷歌翻译
多目标优化(MOO)旨在同时优化多个冲突的目标,并在机器学习中发现了重要的应用,例如最大程度地减少分类损失和差异,以在处理不同的人群方面以保持公平。最佳性,进一步优化一个目标至少将至少损害另一个目标,而决策者需要全面探索多个Optima(称为Pareto Front),以确定一个最终解决方案。我们解决了寻找帕累托阵线的效率。首先,使用随机多偏差下降(SMGD)从头开始寻找前部,对于大型神经网络和数据集很昂贵。我们建议基于预测器 - 校正方法来探索帕累托阵线作为一些初始Optima的歧管。其次,对于每个探索步骤,预测变量求解一个大规模的线性系统,该系统在模型参数数量中二次缩放,并且需要一个反向传播来评估求解器的二阶Hessian-vector产品。我们提出了一个只能线性缩放的高斯 - 纽顿近似,并且只需要每次迭代的一阶内产物。这还允许在大约求解线性系统时,在微小和共轭梯度方法之间进行选择。这些创新使大型网络成为可能的预测器 - 校准。关于多目标(公平和准确性)错误信息检测任务的实验表明,1)预测器 - 矫正器方法可以在更少的时间内找到比或与SMGD更好或与SMGD相似的方法; 2)提出的一阶方法不会损害二阶方法识别的帕累托前沿的质量,同时进一步缩短了运行时间。
translated by 谷歌翻译
We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network during the early stages of training. Thus, the computational cost of subsequent training iterations, besides that of inference, is considerably reduced. Our method, based on variational inference principles using Gaussian scale mixture priors on neural network weights, learns the variational posterior distribution of Bernoulli random variables multiplying the units/filters similarly to adaptive dropout. Our algorithm, ensures that the Bernoulli parameters practically converge to either 0 or 1, establishing a deterministic final network. We analytically derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection and leads to consistent pruning levels and prediction accuracy regardless of weight initialization or the size of the starting network. We prove the convergence properties of our algorithm establishing theoretical and practical pruning conditions. We evaluate the proposed algorithm on the MNIST and CIFAR-10 data sets and the commonly used fully connected and convolutional LeNet and VGG16 architectures. The simulations show that our method achieves pruning levels on par with state-of the-art methods for structured pruning, while maintaining better test-accuracy and more importantly in a manner robust with respect to network initialization and initial size.
translated by 谷歌翻译
在本文中,我们为多个变量的非凸问题提出了一种新颖的解决方案,尤其是对于通常通过交替最小化(AM)策略解决的方法,将原始优化问题拆分为一组与每个变量相对应的子问题,然后使用固定的更新规则迭代优化每个子问题。但是,由于原始优化问题的固有非凸性,即使在每次迭代中可以最佳地解决每个子问题时,优化通常也可以捕获到虚假的局部最小值中。同时,基于学习的方法,例如深层展开算法,受到缺乏标记的数据和有限的解释性的高度限制。为了解决这些问题,我们提出了一种基于元学习的交替最小化(MLAM)方法,该方法旨在最大程度地减少全球损失的部分损失,而不是在每个子问题上最小化,并且倾向于学习一种自适应策略,以学习一种自适应策略更换手工制作的对手,以提前表现出色。同时,拟议的Mlam仍然保持原始算法原则,这有助于更好的解释性。我们在两个代表性问题上评估了提出的方法,即双线性逆问题:矩阵完成和非线性问题:高斯混合模型。实验结果验证了我们所提出的方法在标准设置中的表现优于基于AM的方法,并且能够在具有挑战性的情况下实现有效的优化,而其他比较方法通常会失败。
translated by 谷歌翻译
Recent advance on linear support vector machine with the 0-1 soft margin loss ($L_{0/1}$-SVM) shows that the 0-1 loss problem can be solved directly. However, its theoretical and algorithmic requirements restrict us extending the linear solving framework to its nonlinear kernel form directly, the absence of explicit expression of Lagrangian dual function of $L_{0/1}$-SVM is one big deficiency among of them. In this paper, by applying the nonparametric representation theorem, we propose a nonlinear model for support vector machine with 0-1 soft margin loss, called $L_{0/1}$-KSVM, which cunningly involves the kernel technique into it and more importantly, follows the success on systematically solving its linear task. Its optimal condition is explored theoretically and a working set selection alternating direction method of multipliers (ADMM) algorithm is introduced to acquire its numerical solution. Moreover, we firstly present a closed-form definition to the support vector (SV) of $L_{0/1}$-KSVM. Theoretically, we prove that all SVs of $L_{0/1}$-KSVM are only located on the parallel decision surfaces. The experiment part also shows that $L_{0/1}$-KSVM has much fewer SVs, simultaneously with a decent predicting accuracy, when comparing to its linear peer $L_{0/1}$-SVM and the other six nonlinear benchmark SVM classifiers.
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
Helmholtz机器(HMS)是由两个Sigmoid信念网络(SBN)组成的一类生成模型,分别用作编码器和解码器。这些模型通常是使用称为唤醒 - 睡眠(WS)的两步优化算法对这些模型进行的,并且最近通过改进版本(例如重新恢复的尾流(RWS)和双向Helmholtz Machines(BIHM))进行了改进版本。 SBN中连接的局部性在与概率模型相关的Fisher信息矩阵中诱导稀疏性,并以细粒粒度的块状结构的形式引起。在本文中,我们利用自然梯度利用该特性来有效地训练SBN和HMS。我们提出了一种新颖的算法,称为“自然重新唤醒”(NRWS),该算法与其标准版本的几何适应相对应。以类似的方式,我们还引入了天然双向Helmholtz机器(NBIHM)。与以前的工作不同,我们将展示如何有效地计算自然梯度,而无需引入Fisher信息矩阵结构的任何近似值。在文献中进行的标准数据集进行的实验表明,NRW和NBIHM不仅在其非几何基准方面,而且在HMS的最先进培训算法方面都具有一致的改善。在训练后,汇聚速度以及对数可能达到的对数似然的值量化了改进。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译